Citation: | Li Yani,Liang Kunrui,Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao,2025, 47(5):1–9 |
[1] |
Lima F P, Wethey D S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming[J]. Nature Communications, 2012, 3(1): 704. doi: 10.1038/ncomms1713
|
[2] |
Halpern B S, Walbridge S, Selkoe K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948−952. doi: 10.1126/science.1149345
|
[3] |
Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1010.
|
[4] |
Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243−289 doi: 10.1080/17451000801888726
|
[5] |
Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115.
|
[6] |
Jørgensen B B, Wenzhöfer F, Egger M, et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228: 103987. doi: 10.1016/j.earscirev.2022.103987
|
[7] |
Pamatmat M M. Oxygen consumption by the seabed. VI. seasonal cycle of chemical oxidation and respiration in Puget Sound[J]. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 1971, 56(5): 769−793. doi: 10.1002/iroh.19710560505
|
[8] |
Jørgensen B B, Sørensen J. Seasonal cycles of O2, NO3- and SO42- reduction in estuarine sediments: the significance of an NO3- reduction maximum in spring[J]. Marine Ecology Progress Series, 1985, 24: 65−74. doi: 10.3354/meps024065
|
[9] |
Westrich J T, Berner R A. The effect of temperature on rates of sulfate reduction in marine sediments[J]. Geomicrobiology Journal, 1988, 6(2): 99−117. doi: 10.1080/01490458809377828
|
[10] |
Jørgensen B B. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)[J]. Limnology and Oceanography, 1977, 22(5): 814−832. doi: 10.4319/lo.1977.22.5.0814
|
[11] |
Abdollahi H, Nedwell D B. Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment[J]. Microbial Ecology, 1979, 5(1): 73−79. doi: 10.1007/BF02010581
|
[12] |
Aller R C, Yingst J Y. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA[J]. Marine Biology, 1980, 56(1): 29−42. doi: 10.1007/BF00390591
|
[13] |
Thamdrup B, Fleischer S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191−199. doi: 10.3354/ame015191
|
[14] |
Thamdrup B, Hansen J, Jørgensen B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189−200. doi: 10.1111/j.1574-6941.1998.tb00472.x
|
[15] |
Den Heyer C, Kalff J. Organic matter mineralization rates in sediments: a within- and among-lake study[J]. Limnology and Oceanography, 1998, 43(4): 695−705. doi: 10.4319/lo.1998.43.4.0695
|
[16] |
De Klein J J M, Overbeek C C, Jørgensen J C, et al. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments[J]. Wetlands, 2017, 37(5): 975−983. doi: 10.1007/s13157-017-0933-1
|
[17] |
Edberg N, Hofsten B V. Oxygen uptake of bottom sediments studied in situ and in the laboratory[J]. Water Research, 1973, 7(9): 1285−1294. doi: 10.1016/0043-1354(73)90005-5
|
[18] |
Granéli W. Sediment oxygen uptake in South Swedish lakes[J]. Oikos, 1978, 30(1): 7−16. doi: 10.2307/3543519
|
[19] |
Cardoso S J, Enrich-Prast A, Pace M L, et al. Do models of organic carbon mineralization extrapolate to warmer tropical sediments?[J]. Limnology and Oceanography, 2014, 59(1): 48−54. doi: 10.4319/lo.2014.59.1.0048
|
[20] |
Arnosti C, Jørgensen B B, Sagemann J, et al. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction[J]. Marine Ecology Progress Series, 1998, 165: 59−70. doi: 10.3354/meps165059
|
[21] |
张风菊, 桂智凡, 薛滨, 等. 温度对呼伦湖沉积物有机碳埋藏及矿化影响研究[J]. 第四纪研究, 2020, 40(5): 1240−1250.
Zhang Fengju, Gui Zhifan, Xue Bin, et al. Effects of temperature on organic carbon burial and mineralization in sediments of Hulun Lake[J]. Quaternary Sciences, 2020, 40(5): 1240−1250.
|
[22] |
Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1): 123−145. doi: 10.1146/annurev-marine-120709-142723
|
[23] |
Zhang Jing, Huang Weiwen, Shi Maochong. Huanghe (Yellow River) and its estuary: sediment origin, transport and deposition[J]. Journal of Hydrology, 1990, 120(1/4): 203−223.
|
[24] |
Wang Fushun, Wang Yuchun, Zhang Jing, et al. Human impact on the historical change of CO2 degassing flux in River Changjiang[J]. Geochemical Transactions, 2007, 8: 7. doi: 10.1186/1467-4866-8-7
|
[25] |
Wang Xuchen, Luo Chunle, Ge Tiantian, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1358−1374. doi: 10.1002/lno.10301
|
[26] |
冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 444−447.
Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999: 444−447.
|
[27] |
石学法, 吴斌, 乔淑卿, 等. 中国东部近海沉积有机碳的分布、埋藏及碳汇效应[J]. 中国科学: 地球科学, 2024, 54(10): 3113−3133
Shi Xuefa, Wu Bin, Qiao Shuqing, et al. Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas[J]. Scientia Sinica Terrae, 54(10): 3113−3133
|
[28] |
Wu Ying, Eglinton T, Yang Liyang, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1495−1507. doi: 10.1002/2013JG002286
|
[29] |
Yu Meng, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309: 16−30. doi: 10.1016/j.gca.2021.06.018
|
[30] |
Hu Limin, Shi Xuefa, Bai Yazhi, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50−58. doi: 10.1016/j.jmarsys.2015.10.018
|
[31] |
Hansen J W, Thamdrup B, Jørgensen B B. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies[J]. Marine Ecology Progress Series, 2000, 208: 273−282. doi: 10.3354/meps208273
|
[32] |
Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3): 1312−1318. doi: 10.1128/AEM.68.3.1312-1318.2002
|
[33] |
Song Guodong, Liu Sumei. , Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 53−63. doi: 10.1016/j.dsr2.2015.04.012
|
[34] |
Li W K W, Dickie P M. Temperature characteristics of photosynthetic and heterotrophic activities: seasonal variations in temperate microbial plankton[J]. Applied and Environmental Microbiology, 1987, 53(10): 2282−2295. doi: 10.1128/aem.53.10.2282-2295.1987
|
[35] |
Yuan Huamao, Liu Zhigang, Song Jinming, et al. Studies on the regional feature of organic carbon in sediments off the Huanghe River Estuary waters[J]. Acta Oceanologica Sinica, 2004, 23(1): 129−134.
|
[36] |
Zhang Haiyan, Zhao Liang, Sun Yao, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149−157. doi: 10.1016/j.ecss.2017.05.006
|
[37] |
朱若思, 宋国栋, 刘素美. 黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素[J]. 海洋学报, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074
Zhu Ruosi, Song Guodong, Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074
|
[38] |
陈浈雄, 张超, 李全, 等. 土壤有机碳分解温度敏感性的影响机制研究进展[J]. 应用生态学报, 2023, 34(9): 2575−2584.
Chen Zhenxiong, Zhang Chao, Li Quan, et al. Mechanism underlying temperature sensitivity of soil organic carbon decomposition: a review[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2575−2584.
|
[39] |
Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1−11. doi: 10.1016/j.csr.2014.08.010
|
[40] |
Zhao Bin, Yao Peng, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China Marginal Seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. doi: 10.1029/2020GB006608
|
[41] |
Hou Pengfei, Yu Meng, Zhao Meixun, et al. Terrestrial biomolecular burial efficiencies on continental margins[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2019JG005520. doi: 10.1029/2019JG005520
|
[42] |
Yu Meng, Eglinton T I, Hou Pengfei, et al. Apparent aging and rejuvenation of terrestrial organic carbon along the river-estuary-coastal ocean continuum[J]. Geophysical Research Letters, 2024, 51(8): e2023GL107855. doi: 10.1029/2023GL107855
|
[43] |
Zhao Bin, Yao Peng, Bianchi T S, et al. Contrasting controls of particulate organic carbon composition and age from riverine to coastal sediments of Eastern China Marginal Seas[J]. Chemical Geology, 2023, 624: 121429. doi: 10.1016/j.chemgeo.2023.121429
|
[44] |
Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075−1090 doi: 10.1016/0016-7037(79)90095-4
|
[45] |
Giles H, Pilditch C A, Nodder S D, et al. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf[J]. Continental Shelf Research, 2007, 27(18): 2373−2388. doi: 10.1016/j.csr.2007.06.007
|