Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Li Yani,Liang Kunrui,Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao,2025, 47(5):1–9
Citation: Li Yani,Liang Kunrui,Song Guodong, et al. Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore[J]. Haiyang Xuebao,2025, 47(5):1–9

Temperature dependence of sediment oxygen consumption from the Yangtze River Estuary, the Yellow River Estuary and the Yellow Sea nearshore

  • Received Date: 2024-09-28
  • Rev Recd Date: 2025-02-28
  • Available Online: 2025-04-28
  • Sediment oxygen consumption (SOC) is a key parameter for quantifying organic carbon mineralization in sediments, crucial for understanding the marine carbon cycle. The oxygen consumption of sediments in marginal seas account for approximately 60% of global marine sediments. Temperature is a major factor influencing microbial respiration in sediments. However, there is a lack of research on the differences in temperature responses of sediment oxygen consumption across various estuaries and nearshore areas, which may lead to inaccuracies in our understanding of sediment oxygen consumption and mineralization, especially in the context of global warming and rising sea temperatures. This study examined sediment from the Yangtze River Estuary, the Yellow River Estuary, and the Yellow Sea nearshore, measuring sediment oxygen consumption across a temperature range of 2−45 ℃ with 2−3 ℃ increments. Results showed an exponential increase in sediment oxygen consumption with temperature in all three regions. The apparent activation energy (Eaʹ) of sediment oxygen consumption in the Yangtze River Estuary is in the range of 69−77 kJ/mol, and the temperature coefficient (Q10 (15−25℃)) is 2.6−3.0, similar to sediments in the Weser Estuary of Germany. In the Yellow River Estuary and the coastal area of the Yellow Sea, the Eaʹ is 51−58 kJ/mol, and the Q10 (15−25℃) value is 2.0−2.3, comparable to data from shallow sediments in the Canada Bay. The Eaʹ and Q10 (15−25℃) of sediment oxygen consumption in the Yangtze River Estuary are significantly higher than those in the Yellow River Estuary and the Yellow Sea nearshore (AVONA, P<0.01), likely due to higher labile organic carbon content. The range of sediment oxygen consumption Q10 (15−25℃) is 2.5 ± 0.3, basically in line with that of sediment oxygen consumption on a global scale (2.4 ± 0.4), consistent with the range of Q10 being 2−3 for most biological reactions. This study provides critical data on the temperature response and differences in SOC, offering insights into the feedback between carbon mineralization in estuarine and nearshore sediments and global climate change.
  • loading
  • [1]
    Lima F P, Wethey D S. Three decades of high-resolution coastal sea surface temperatures reveal more than warming[J]. Nature Communications, 2012, 3(1): 704. doi: 10.1038/ncomms1713
    [2]
    Halpern B S, Walbridge S, Selkoe K A, et al. A global map of human impact on marine ecosystems[J]. Science, 2008, 319(5865): 948−952. doi: 10.1126/science.1149345
    [3]
    Seiter K, Hensen C, Zabel M. Benthic carbon mineralization on a global scale[J]. Global Biogeochemical Cycles, 2005, 19(1): GB1010.
    [4]
    Glud R N. Oxygen dynamics of marine sediments[J]. Marine Biology Research, 2008, 4(4): 243−289 doi: 10.1080/17451000801888726
    [5]
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49(2/3): 81−115.
    [6]
    Jørgensen B B, Wenzhöfer F, Egger M, et al. Sediment oxygen consumption: role in the global marine carbon cycle[J]. Earth-Science Reviews, 2022, 228: 103987. doi: 10.1016/j.earscirev.2022.103987
    [7]
    Pamatmat M M. Oxygen consumption by the seabed. VI. seasonal cycle of chemical oxidation and respiration in Puget Sound[J]. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 1971, 56(5): 769−793. doi: 10.1002/iroh.19710560505
    [8]
    Jørgensen B B, Sørensen J. Seasonal cycles of O2, NO3- and SO42- reduction in estuarine sediments: the significance of an NO3- reduction maximum in spring[J]. Marine Ecology Progress Series, 1985, 24: 65−74. doi: 10.3354/meps024065
    [9]
    Westrich J T, Berner R A. The effect of temperature on rates of sulfate reduction in marine sediments[J]. Geomicrobiology Journal, 1988, 6(2): 99−117. doi: 10.1080/01490458809377828
    [10]
    Jørgensen B B. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark)[J]. Limnology and Oceanography, 1977, 22(5): 814−832. doi: 10.4319/lo.1977.22.5.0814
    [11]
    Abdollahi H, Nedwell D B. Seasonal temperature as a factor influencing bacterial sulfate reduction in a saltmarsh sediment[J]. Microbial Ecology, 1979, 5(1): 73−79. doi: 10.1007/BF02010581
    [12]
    Aller R C, Yingst J Y. Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of long Island Sound, USA[J]. Marine Biology, 1980, 56(1): 29−42. doi: 10.1007/BF00390591
    [13]
    Thamdrup B, Fleischer S. Temperature dependence of oxygen respiration, nitrogen mineralization, and nitrification in Arctic sediments[J]. Aquatic Microbial Ecology, 1998, 15: 191−199. doi: 10.3354/ame015191
    [14]
    Thamdrup B, Hansen J, Jørgensen B B. Temperature dependence of aerobic respiration in a coastal sediment[J]. FEMS Microbiology Ecology, 1998, 25(2): 189−200. doi: 10.1111/j.1574-6941.1998.tb00472.x
    [15]
    Den Heyer C, Kalff J. Organic matter mineralization rates in sediments: a within- and among-lake study[J]. Limnology and Oceanography, 1998, 43(4): 695−705. doi: 10.4319/lo.1998.43.4.0695
    [16]
    De Klein J J M, Overbeek C C, Jørgensen J C, et al. Effect of temperature on oxygen profiles and denitrification rates in freshwater sediments[J]. Wetlands, 2017, 37(5): 975−983. doi: 10.1007/s13157-017-0933-1
    [17]
    Edberg N, Hofsten B V. Oxygen uptake of bottom sediments studied in situ and in the laboratory[J]. Water Research, 1973, 7(9): 1285−1294. doi: 10.1016/0043-1354(73)90005-5
    [18]
    Granéli W. Sediment oxygen uptake in South Swedish lakes[J]. Oikos, 1978, 30(1): 7−16. doi: 10.2307/3543519
    [19]
    Cardoso S J, Enrich-Prast A, Pace M L, et al. Do models of organic carbon mineralization extrapolate to warmer tropical sediments?[J]. Limnology and Oceanography, 2014, 59(1): 48−54. doi: 10.4319/lo.2014.59.1.0048
    [20]
    Arnosti C, Jørgensen B B, Sagemann J, et al. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction[J]. Marine Ecology Progress Series, 1998, 165: 59−70. doi: 10.3354/meps165059
    [21]
    张风菊, 桂智凡, 薛滨, 等. 温度对呼伦湖沉积物有机碳埋藏及矿化影响研究[J]. 第四纪研究, 2020, 40(5): 1240−1250.

    Zhang Fengju, Gui Zhifan, Xue Bin, et al. Effects of temperature on organic carbon burial and mineralization in sediments of Hulun Lake[J]. Quaternary Sciences, 2020, 40(5): 1240−1250.
    [22]
    Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1): 123−145. doi: 10.1146/annurev-marine-120709-142723
    [23]
    Zhang Jing, Huang Weiwen, Shi Maochong. Huanghe (Yellow River) and its estuary: sediment origin, transport and deposition[J]. Journal of Hydrology, 1990, 120(1/4): 203−223.
    [24]
    Wang Fushun, Wang Yuchun, Zhang Jing, et al. Human impact on the historical change of CO2 degassing flux in River Changjiang[J]. Geochemical Transactions, 2007, 8: 7. doi: 10.1186/1467-4866-8-7
    [25]
    Wang Xuchen, Luo Chunle, Ge Tiantian, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1358−1374. doi: 10.1002/lno.10301
    [26]
    冯士筰, 李凤岐, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999: 444−447.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999: 444−447.
    [27]
    石学法, 吴斌, 乔淑卿, 等. 中国东部近海沉积有机碳的分布、埋藏及碳汇效应[J]. 中国科学: 地球科学, 2024, 54(10): 3113−3133

    Shi Xuefa, Wu Bin, Qiao Shuqing, et al. Distribution, burial fluxes and carbon sink effect of sedimentary organic carbon in the eastern China seas[J]. Scientia Sinica Terrae, 54(10): 3113−3133
    [28]
    Wu Ying, Eglinton T, Yang Liyang, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1495−1507. doi: 10.1002/2013JG002286
    [29]
    Yu Meng, Eglinton T I, Haghipour N, et al. Contrasting fates of terrestrial organic carbon pools in marginal sea sediments[J]. Geochimica et Cosmochimica Acta, 2021, 309: 16−30. doi: 10.1016/j.gca.2021.06.018
    [30]
    Hu Limin, Shi Xuefa, Bai Yazhi, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J]. Journal of Marine Systems, 2016, 155: 50−58. doi: 10.1016/j.jmarsys.2015.10.018
    [31]
    Hansen J W, Thamdrup B, Jørgensen B B. Anoxic incubation of sediment in gas-tight plastic bags: a method for biogeochemical process studies[J]. Marine Ecology Progress Series, 2000, 208: 273−282. doi: 10.3354/meps208273
    [32]
    Thamdrup B, Dalsgaard T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3): 1312−1318. doi: 10.1128/AEM.68.3.1312-1318.2002
    [33]
    Song Guodong, Liu Sumei. , Zhu Zhuoyi, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 124: 53−63. doi: 10.1016/j.dsr2.2015.04.012
    [34]
    Li W K W, Dickie P M. Temperature characteristics of photosynthetic and heterotrophic activities: seasonal variations in temperate microbial plankton[J]. Applied and Environmental Microbiology, 1987, 53(10): 2282−2295. doi: 10.1128/aem.53.10.2282-2295.1987
    [35]
    Yuan Huamao, Liu Zhigang, Song Jinming, et al. Studies on the regional feature of organic carbon in sediments off the Huanghe River Estuary waters[J]. Acta Oceanologica Sinica, 2004, 23(1): 129−134.
    [36]
    Zhang Haiyan, Zhao Liang, Sun Yao, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149−157. doi: 10.1016/j.ecss.2017.05.006
    [37]
    朱若思, 宋国栋, 刘素美. 黄、渤海沉积物耗氧速率的时空分布特征和环境影响因素[J]. 海洋学报, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074

    Zhu Ruosi, Song Guodong, Liu Sumei. Characteristics of spatial and temporal distribution of sediment oxygen consumption rate and environmental influence factors in the Yellow Sea and Bohai Sea[J]. Haiyang Xuebao, 2024, 46(5): 16−26. doi: 10.12284/hyxb2024074
    [38]
    陈浈雄, 张超, 李全, 等. 土壤有机碳分解温度敏感性的影响机制研究进展[J]. 应用生态学报, 2023, 34(9): 2575−2584.

    Chen Zhenxiong, Zhang Chao, Li Quan, et al. Mechanism underlying temperature sensitivity of soil organic carbon decomposition: a review[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2575−2584.
    [39]
    Yao Peng, Zhao Bin, Bianchi T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation[J]. Continental Shelf Research, 2014, 91: 1−11. doi: 10.1016/j.csr.2014.08.010
    [40]
    Zhao Bin, Yao Peng, Bianchi T S, et al. Controls on organic carbon burial in the Eastern China Marginal Seas: a regional synthesis[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006608. doi: 10.1029/2020GB006608
    [41]
    Hou Pengfei, Yu Meng, Zhao Meixun, et al. Terrestrial biomolecular burial efficiencies on continental margins[J]. Journal of Geophysical Research: Biogeosciences, 2020, 125(8): e2019JG005520. doi: 10.1029/2019JG005520
    [42]
    Yu Meng, Eglinton T I, Hou Pengfei, et al. Apparent aging and rejuvenation of terrestrial organic carbon along the river-estuary-coastal ocean continuum[J]. Geophysical Research Letters, 2024, 51(8): e2023GL107855. doi: 10.1029/2023GL107855
    [43]
    Zhao Bin, Yao Peng, Bianchi T S, et al. Contrasting controls of particulate organic carbon composition and age from riverine to coastal sediments of Eastern China Marginal Seas[J]. Chemical Geology, 2023, 624: 121429. doi: 10.1016/j.chemgeo.2023.121429
    [44]
    Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075−1090 doi: 10.1016/0016-7037(79)90095-4
    [45]
    Giles H, Pilditch C A, Nodder S D, et al. Benthic oxygen fluxes and sediment properties on the northeastern New Zealand continental shelf[J]. Continental Shelf Research, 2007, 27(18): 2373−2388. doi: 10.1016/j.csr.2007.06.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (37) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return