Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Zhou Yupeng,Xiao Zunyong,Chen Jinlian, et al. The difference in thermal tolerance between Acropora muricata and Acropora hyacinthus[J]. Haiyang Xuebao,2025, 47(x):1–11
Citation: Zhou Yupeng,Xiao Zunyong,Chen Jinlian, et al. The difference in thermal tolerance between Acropora muricata and Acropora hyacinthus[J]. Haiyang Xuebao,2025, 47(x):1–11

The difference in thermal tolerance between Acropora muricata and Acropora hyacinthus

  • Received Date: 2025-01-03
  • Rev Recd Date: 2025-03-20
  • Available Online: 2025-04-24
  • Global warming has led to frequent large-scale coral bleaching events, accelerating the degradation of coral reef ecosystems. Internationally, coral transplantation is commonly employed as a method to restore degraded coral reefs, with Acropora species constituting the majority of the transplanted corals. However, fast-growing branching Acropora corals are more sensitive to heat, which affects their restoration efficacy in the increasingly warming marine environment. To understand the thermal response patterns and thermal tolerance differences of Acropora, this study conducted high-temperature stress experiments on Acropora muricata and Acropora hyacinthus from Weizhou Island, Guangxi. Through the analysis of physiological and biochemical indicators, it was observed that after high-temperature stress, A. muricata exhibited tentacle retraction and color fading, and the activity levels of antioxidants (superoxide dismutase, glutathione, catalase), ammonium assimilation enzyme (glutamine synthetase), and cysteinyl aspartate specific proteinase-3 (caspase-3) showed a trend of initially increasing and then decreasing. A. hyacinthus showed a similar response pattern, except for superoxide dismutase and glutamine synthetase. At 34℃, A. hyacinthus performed better in physiological indicators, with superoxide dismutase, ammonium assimilation enzyme, and caspase-3 maintained high activity and sensitive response, indicating that A. hyacinthus resists high-temperature environments by increasing the activity of these proteases, and it is more heat-tolerant than A. muricata. This study revealed the physiological response patterns of the two Acropora species under high-temperature stress and compared their thermal tolerance differences, providing a theoretical basis for the selection of heat-tolerant corals and the ecological restoration of coral reefs.
  • loading
  • [1]
    Spalding M, Ravilious C, Green E P. World atlas of coral reefs[M]. Bethesda: University of California Press, 2003.
    [2]
    Bellwood D R, Streit R P, Brandl S J, et al. The meaning of the term 'function' in ecology: a coral reef perspective[J]. Functional Ecology, 2019, 33(6): 948−961. doi: 10.1111/1365-2435.13265
    [3]
    Reaser J K, Pomerance R, Thomas P O. Coral bleaching and global climate change: scientitic findings and policy recommendations[J]. Conservation Biology, 2000, 14(5): 1500−1511. doi: 10.1046/j.1523-1739.2000.99145.x
    [4]
    Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
    [5]
    Reimer J D, Peixoto R S, Davies S W, et al. The fourth global coral bleaching event: where do we go from here?[J]. Coral Reefs, 2024, 43(4): 1121−1125. doi: 10.1007/s00338-024-02504-w
    [6]
    Eakin C M, Sweatman H P A, Brainard R E. The 2014-2017 global-scale coral bleaching event: insights and impacts[J]. Coral Reefs, 2019, 38: 539−545. doi: 10.1007/s00338-019-01844-2
    [7]
    Hoegh-Guldberg O, Kennedy E V, Beyer H L, et al. Securing a long-term future for coral reefs[J]. Trends in Ecology & Evolution, 2018, 33(12): 936−944.
    [8]
    Hughes T P, Anderson K D, Connolly S R, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene[J]. Science, 2018, 359(6371): 80−83. doi: 10.1126/science.aan8048
    [9]
    Hooidonk R V, Maynard J, Grimsditch G, et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: climate policy implications, management applications, and regional seas summaries[R]. Nairobi, Kenya: United Nations Environment Programme, 2020.
    [10]
    刘旭. 造礁石珊瑚对温度胁迫的响应机制研究[D]. 南宁: 广西大学, 2020.

    Liu Xu. Responsive mechanism of reef-building coral rocks to temperature stress[D]. Nanning: Guangxi University, 2020.
    [11]
    蒙林庆, 黄雯, 阳恩广, 等. 高温白化事件可提高涠洲岛澄黄滨珊瑚(Porites Lutea)的耐热性[J]. 海洋学报, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009

    Meng Linqing, Huang Wen, Yang Enguang, et al. High temperature bleaching events can increase thermal tolerance of Porites lutea in the Weizhou Island[J]. Haiyang Xuebao, 2022, 44(8): 87−96. doi: 10.12284/j.issn.0253-4193.2022.8.hyxb202208009
    [12]
    Huang Wen, Xiao Zunyong, Liu Xu, et al. Short-term thermal acclimation improved the thermal tolerance of three species of scleractinian corals in the South China Sea[J]. Journal of Sea Research, 2024, 199: 102505. doi: 10.1016/j.seares.2024.102505
    [13]
    Jin Y K, Lundgren P, Lutz A, et al. Genetic markers for antioxidant capacity in a reef-building coral[J]. Science Advances, 2016, 2(5): e1500842. doi: 10.1126/sciadv.1500842
    [14]
    Marshall P A, Baird A H. Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa[J]. Coral Reefs, 2000, 19(2): 155−163. doi: 10.1007/s003380000086
    [15]
    Muir P R, Done T, Aguirre J D. High regional and intrageneric variation in susceptibility to mass bleaching in Indo-Pacific coral species[J]. Global Ecology and Biogeography, 2021, 30(9): 1889−1898. doi: 10.1111/geb.13353
    [16]
    张浴阳, 刘骋跃, 王丰国, 等. 典型近岸退化珊瑚礁的成功修复案例——蜈支洲珊瑚覆盖率的恢复[J]. 应用海洋学学报, 2021, 40(1): 26−33.

    Zhang Yuyang, Liu Chengyue, Wang Fengguo, et al. Successful restoration of typical degraded coastal coral reefs — a restoration of coral coverage at Wuzhizhou Island[J]. Journal of Applied Oceanography, 2021, 40(1): 26−33.
    [17]
    Williams S L, Sur C, Janetski N, et al. Large-scale coral reef rehabilitation after blast fishing in Indonesia[J]. Restoration Ecology, 2019, 27(2): 447−456. doi: 10.1111/rec.12866
    [18]
    Bayraktarov E, Banaszak A T, Maya P M, et al. Coral reef restoration efforts in Latin American countries and territories[J]. PLoS One, 2020, 15(8): e0228477. doi: 10.1371/journal.pone.0228477
    [19]
    Morand G, Dixon S, Le Berre T. Identifying key factors for coral survival in reef restoration projects using deep learning[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2022, 32(11): 1758−1773. doi: 10.1002/aqc.3878
    [20]
    Okubo N. Insights into coral restoration projects in Japan[J]. Ocean & Coastal Management, 2023, 232: 106371.
    [21]
    王欣, 高霆炜, 陈骁, 等. 涠洲岛园艺式珊瑚苗圃的架设与移植[J]. 广西科学, 2017, 24(5): 462−467.

    Wang Xin, Gao Tingwei, Chen Xiao, et al. The construction and transplantation of coral gardening nursery in Weizhou Island[J]. Guangxi Sciences, 2017, 24(5): 462−467.
    [22]
    Harithsa S, Raghukumar C, Dalal S G. Stress response of two coral species in the Kavaratti atoll of the Lakshadweep Archipelago, India[J]. Coral Reefs, 2005, 24: 463−474. doi: 10.1007/s00338-005-0008-2
    [23]
    李淑, 余克服, 陈天然, 等. 在细胞水平上对高温珊瑚白化的初步研究[J]. 热带海洋学报, 2011, 30(2): 33−38.

    Li Shu, Yu Kefu, Chen Tianran, et al. Preliminary study of coral bleaching at cellular level under thermal stress[J]. Journal of Tropical Oceanography, 2011, 30(2): 33−38.
    [24]
    俞小鹏. 南海北部造礁珊瑚对高温胁迫的响应及适应性研究[D]. 南宁: 广西大学, 2022.

    Yu Xiaopeng. Response and adaptation of scleractinian coral to high temperature stress in the Northern South China Sea[D]. Nanning: Guangxi University, 2022.
    [25]
    E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. (查阅网上资料, 未找到本条文献信息, 请确认)

    E Johannes R, L Coles S, L Kuenzel N T J, et al. The role of coolants in the nutrition of some scarlatina corals[J]. Limnology and Oceanography, 1970, 15(4): 5799−5586. ( 查阅网上资料, 未找到本条文献信息, 请确认)
    [26]
    Jeffrey Dr S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie Und Physiologie Der Pflanzen, 1975, 167(2): 191−194. doi: 10.1016/S0015-3796(17)30778-3
    [27]
    Zhou Zhi, Ni Xingzhen, Wu Zhongjie, et al. Physiological and transcriptomic analyses reveal the threat of herbicides glufosinate and glyphosate to the scleractinian coral Pocillopora damicornis[J]. Ecotoxicology and Environmental Safety, 2022, 229: 113074. doi: 10.1016/j.ecoenv.2021.113074
    [28]
    Tang Xiaoyu, Yang Qingsong, Zhang Ying, et al. Validating the use of ROS-scavenging bacteria as probiotics to increase coral resilience to thermal stress[J]. Journal of Oceanology and Limnology, 2024, 42(4): 1242−1260. doi: 10.1007/s00343-024-3159-0
    [29]
    Ighodaro O M, Akinloye O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): their fundamental role in the entire antioxidant defence grid[J]. Alexandria Journal of Medicine, 2018, 54(4): 287−293. doi: 10.1016/j.ajme.2017.09.001
    [30]
    Nimse S B, Pal D. Free radicals, natural antioxidants, and their reaction mechanisms[J]. RSC Advances, 2015, 5(35): 27986−28006. doi: 10.1039/C4RA13315C
    [31]
    Dias M, Ferreira A, Gouveia R, et al. Long-term exposure to increasing temperatures on scleractinian coral fragments reveals oxidative stress[J]. Marine Environmental Research, 2019, 150: 104758. doi: 10.1016/j.marenvres.2019.104758
    [32]
    Lesser M P. Oxidative stress in marine environments: biochemistry and physiological ecology[J]. Annual Review of Physiology, 2006, 68: 253−278. doi: 10.1146/annurev.physiol.68.040104.110001
    [33]
    Tang Jia, Ni Xingzhen, Wen Jianqing, et al. Increased ammonium assimilation activity in the scleractinian coral Pocillopora damicornis but not its symbiont after acute heat stress[J]. Frontiers in Marine Science, 2020, 7: 565068. doi: 10.3389/fmars.2020.565068
    [34]
    Su Yilu, Zhou Zhi, Yu Xiaopeng. Possible roles of glutamine synthetase in responding to environmental changes in a scleractinian coral[J]. Molecular Biology Reports, 2018, 45(6): 2115−2124. doi: 10.1007/s11033-018-4369-3
    [35]
    刘旭, 黄雯, 俞小鹏, 等. 适度热胁迫对造礁石珊瑚热耐受性影响的研究[J]. 海洋湖沼通报, 2022, 44(1): 99−105.

    Liu Xu, Huang Wen, Yu Xiaopeng, et al. Studies on the effect of moderate heat stress on the heat tolerance of scleractinian coral[J]. Transactions of Oceanology and Limnology, 2022, 44(1): 99−105.
    [36]
    Yu Xiaopeng, Huang Bo, Zhou Zhi, et al. Involvement of caspase3 in the acute stress response to high temperature and elevated ammonium in stony coral Pocillopora damicornis[J]. Gene, 2017, 637: 108−114. doi: 10.1016/j.gene.2017.09.040
    [37]
    李淑, 余克服, 施祺, 等. 海南岛鹿回头石珊瑚对高温响应行为的实验研究[J]. 热带地理, 2008, 28(6): 534−539.

    Li Shu, Yu Kefu, Shi Qi, et al. Experimental study of stony coral response to the high temperature in Luhuitou of Hainan Island[J]. Tropical Geography, 2008, 28(6): 534−539.
    [38]
    Huang Wen, Meng Linqing, Xiao Zunyong, et al. Heat‐tolerant intertidal rock pool coral Porites lutea can potentially adapt to future warming[J]. Molecular Ecology, 2024, 33(5): e17273. doi: 10.1111/mec.17273
    [39]
    Hinrichs S, Patten N L, Waite A M. Temporal variations in metabolic and autotrophic indices for acropora digitifera and acropora spicifera - implications for monitoring projects[J]. PLoS One, 2013, 8(5): e63693. doi: 10.1371/journal.pone.0063693
    [40]
    张海洋, 赵美霞, 钟瑜, 等. 南海北部造礁石珊瑚共生体光合作用特征季节性监测[J]. 海洋地质前沿, 2021, 37(6): 84−91.

    Zhang Haiyang, Zhao Meixia, Zhong Yu, et al. Seasonal monitoring of photosynthesis characteristics of scleractinian corals in the Northern South China Sea[J]. Marine Geology Frontiers, 2021, 37(6): 84−91.
    [41]
    Stimson J. The annual cycle of density of zooxanthellae in the tissues of field and laboratory-held Pocillopora damicornis (Linnaeus)[J]. Journal of Experimental Marine Biology and Ecology, 1997, 214(1-2): 35−48. doi: 10.1016/S0022-0981(96)02753-0
    [42]
    Brown B E, Dunne R P, Ambarsari I, et al. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species[J]. Marine Ecology Progress Series, 1999, 191: 53−69. doi: 10.3354/meps191053
    [43]
    Bhagooli R, Hidaka M. Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2004, 137(3): 547−555.
    [44]
    Cziesielski M J, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies[J]. Ecology and Evolution, 2019, 9(17): 10055−10066. doi: 10.1002/ece3.5576
    [45]
    Weis V M. Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis[J]. Journal of Experimental Biology, 2008, 211(19): 3059−3066. doi: 10.1242/jeb.009597
    [46]
    邓传奇. 南海环境敏感型造礁珊瑚共生微生物应对温度改变的生态过程[D]. 南宁: 广西大学, 2021.

    Deng Chuanqi. Ecological process of symbiotic microorganisms in environmentally sensitive reef-building corals in the South China Sea in response to temperature changes[J]. Nanning: Guangxi University, 2021.
    [47]
    许勇前, 陈飚, 覃良云, 等. 涠洲岛霜鹿角珊瑚共生虫黄藻群落的季节变化特征[J]. 广东农业科学, 2023, 50(7): 164−172.

    Xu Yongqian, Chen Biao, Qin Liangyun, et al. Seasonal variation characteristics of the symbiodiniaceae community associated with Acropora pruinosa from Weizhou Island[J]. Guangdong Agricultural Sciences, 2023, 50(7): 164−172.
    [48]
    韦雪露. 涠洲岛珊瑚共生功能体对季节性温度波动及极端温度胁迫的响应[D]. 南宁: 广西大学, 2024.

    Wei Xuelu. The response of coral holobionts to seasonal temperature fluctuations and extreme temperature stress in Weizhou Island[D]. Nanning: Guangxi University, 2024.
    [49]
    骆雯雯. 涠洲岛造礁石珊瑚共生体系对异常温度胁迫响应的实验研究[D]. 南宁: 广西大学, 2019.

    Luo Wenwen. Experimental response of reef-building coral symbiotic system in Weizhou Island to abnormalous temperature stress[D]. Nanning: Guangxi University, 2019.
    [50]
    Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts[J]. Nature, 2004, 430(7001): 742. doi: 10.1038/430742a
    [51]
    Al-Hammady M A M M, Silva T F, Hussein H N M, et al. How do algae endosymbionts mediate for their coral host fitness under heat stress? A comprehensive mechanistic overview[J]. Algal Research, 2022, 67: 102850. doi: 10.1016/j.algal.2022.102850
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (2) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return