Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Dai Xiaoming,Zou Zhongshui,Li Ziping. The characteristics of the wave coherent stress and its parameterization under swell condition[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Dai Xiaoming,Zou Zhongshui,Li Ziping. The characteristics of the wave coherent stress and its parameterization under swell condition[J]. Haiyang Xuebao,2025, 47(x):1–13

The characteristics of the wave coherent stress and its parameterization under swell condition

  • Received Date: 2025-02-24
  • Rev Recd Date: 2025-05-09
  • Available Online: 2025-06-03
  • Accurate parameterization of the momentum flux plays a decisive role in ocean and atmospheric hazards and climate change. However, the Wave Coherent (WC) stress, as one of the uncertainties factors, modulates the momentum flux severely. In this paper, the WC stress is extracted from the observation obtained from the South China Sea in 2012. The observation shows that the contribution of WC stress to total wind stress relies on the angle difference between wind and wave direction: it approaches zero when the angle difference is 90° and accounts for 20~25% when the angle is ~180°. To describe the WC stress, the scheme of Janssen (J91) and Zou et al. (2024) (Z24) is compared. The result shows that J91 can underestimate the WC stress by about 1~2 orders of magnitude, while Z24 behaves better. The WC stress given by J91 decreases with height, leading to a non-effect on wind profile; while WC stress given by Z24 first increases then decreases, with the height of its maximum being influenced by atmospheric stability, which leads to higher wind speeds near (or away from) the sea surface under stable (or unstable) conditions compared to the J91 scheme when swell exerted upward momentum flux. A new method to parameterize the momentum flux is also given by including the WC stress in this paper; the result shows that it has a high correlation coefficient in the wind speed range of 3–7 m/s and a smaller overall sample bias than the Coupled Ocean-Atmosphere Response Experiment (COARE) 3.5.
  • loading
  • [1]
    刘凡, 陆小敏, 徐丹, 等. 海浪预报方法研究进展[J]. 河海大学学报(自然科学版), 2021, 49(5): 387−393.

    Liu Fan, Lu Xiaomin, Xu Dan, et al. Research progress of ocean waves forecasting method[J]. Journal of Hohai University (Natural Sciences), 2021, 49(5): 387−393.
    [2]
    Shimura T, Hemer M, Lenton A, et al. Impacts of ocean wave-dependent momentum flux on global ocean climate[J]. Geophysical Research Letters, 2020, 47(20): e2020GL089296. doi: 10.1029/2020GL089296
    [3]
    王蓉, 张强, 岳平, 等. 大气边界层数值模拟研究与未来展望[J]. 地球科学进展, 2020, 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036

    Wang Rong, Zhang Qiang, Yue Ping, et al. Summary and prospects of numerical simulation research of the atmospheric boundary layer[J]. Advances in Earth Science, 2020, 35(4): 331−349. doi: 10.11867/j.issn.1001-8166.2020.036
    [4]
    Monin A S, Yaglom A M. Statistical Fluid Mechanics[M]. Cambridge: MIT Press, 1971.
    [5]
    Fairall C W, Bradley E F, Hare J E, et al. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm[J]. Journal of Climate, 2003, 16(4): 571−591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
    [6]
    Liu Bin, Guan Changlong, Xie Lian. The wave state and sea spray related parameterization of wind stress applicable from low to extreme winds[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J22.
    [7]
    Zhang Lianxin, Zhang Xuefeng, Chu P C, et al. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)[J]. Journal of Geophysical Research: Oceans, 2017, 122(10): 7783−7802. doi: 10.1002/2016JC012592
    [8]
    Komori S, Iwano K, Takagaki N, et al. Laboratory measurements of heat transfer and drag coefficients at extremely high wind speeds[J]. Journal of Physical Oceanography, 2018, 48(4): 959−974. doi: 10.1175/JPO-D-17-0243.1
    [9]
    李建东, 陈希, 蒋国荣, 等. 海洋边界层内风、浪相互作用研究进展[J]. 海洋预报, 2005, 22(1): 58−66. doi: 10.3969/j.issn.1003-0239.2005.01.009

    Li Jiandong, Chen Xi, Jiang Guorong, et al. The progress of research on the air-sea interaction in WBL[J]. Marine Forecasts, 2005, 22(1): 58−66. doi: 10.3969/j.issn.1003-0239.2005.01.009
    [10]
    Sahlée E, Drennan W M, Potter H, et al. Waves and air‐sea fluxes from a drifting ASIS buoy during the Southern Ocean Gas Exchange experiment[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8): C08003.
    [11]
    Chen Sheng, Qiao Fangli, Jiang Wenzheng, et al. Impact of surface waves on wind stress under low to moderate wind conditions[J]. Journal of Physical Oceanography, 2019, 49(8): 2017−2028. doi: 10.1175/JPO-D-18-0266.1
    [12]
    Voermans J J, Rapizo H, Ma Hongyu, et al. Air–Sea Momentum fluxes during tropical cyclone Olwyn[J]. Journal of Physical Oceanography, 2019, 49(6): 1369−1379. doi: 10.1175/JPO-D-18-0261.1
    [13]
    Jiang Qingfang. Influence of swell on marine surface-layer structure[J]. Journal of the Atmospheric Sciences, 2020, 77(5): 1865−1885. doi: 10.1175/JAS-D-19-0098.1
    [14]
    Babanin A V, Makin V K. Effects of wind trend and gustiness on the sea drag: lake George study[J]. Journal of Geophysical Research: Oceans, 2008, 113(C2): C02015.
    [15]
    Donelan M A, Drennan W M, Katsaros K B. The air-sea momentum flux in conditions of wind sea and swell[J]. Journal of Physical Oceanography, 1997, 27(10): 2087−2099. doi: 10.1175/1520-0485(1997)027<2087:TASMFI>2.0.CO;2
    [16]
    Rieder K F, Smith J A. Removing wave effects from the wind stress vector[J]. Journal of Geophysical Research: Oceans, 1998, 103(C1): 1363−1374. doi: 10.1029/97JC02571
    [17]
    Smedman A S, Larsén X G, Högström U, et al. Effect of sea state on the momentum exchange over the sea during neutral conditions[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 31.
    [18]
    Högström U, Sahlée E, Smedman A, et al. Surface stress over the ocean in swell-dominated conditions during moderate winds[J]. Journal of the Atmospheric Sciences, 2015, 72(12): 4777−4795. doi: 10.1175/JAS-D-15-0139.1
    [19]
    Zou Zhongshui, Li Shuiqing, Huang Jian, et al. Atmospheric boundary layer turbulence in the presence of swell: turbulent kinetic energy budget, Monin–Obukhov similarity theory, and inertial dissipation method[J]. Journal of Physical Oceanography, 2020, 50(5): 1213−1225. doi: 10.1175/JPO-D-19-0136.1
    [20]
    Liu Changlong, Li Xinyu, Song Jinbao, et al. Characteristics of the marine atmospheric boundary layer under the influence of ocean surface waves[J]. Journal of Physical Oceanography, 2022, 52(6): 1261−1276. doi: 10.1175/JPO-D-21-0164.1
    [21]
    Chalikov D. The Parameterization of the wave boundary layer[J]. Journal of Physical Oceanography, 1995, 25(6): 1333−1349. doi: 10.1175/1520-0485(1995)025<1333:TPOTWB>2.0.CO;2
    [22]
    Babanin A V, Mcconochie J, Chalikov D. Winds near the surface of waves: observations and modeling[J]. Journal of Physical Oceanography, 2018, 48(5): 1079−1088. doi: 10.1175/JPO-D-17-0009.1
    [23]
    Makin V K, Kudryavtsev V N, Mastenbroek C. Drag of the sea surface[J]. Boundary-Layer Meteorology, 1995, 73(1): 159−182.
    [24]
    García-Nava H, Ocampo-Torres F J, Hwang P A, et al. Reduction of wind stress due to swell at high wind conditions[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J11.
    [25]
    Kudryavtsev V, Chapron B, Makin V. Impact of wind waves on the air-sea fluxes: a coupled model[J]. Journal of Geophysical Research: Oceans, 2014, 119(2): 1217−1236. doi: 10.1002/2013JC009412
    [26]
    Zou Zhongshui, Zhao Dongliang, Zhang Juna, et al. The influence of swell on the atmospheric boundary layer under Nonneutral conditions[J]. Journal of Physical Oceanography, 2018, 48(4): 925−936. doi: 10.1175/JPO-D-17-0195.1
    [27]
    Hanley K E, Belcher S E. Wave-Driven wind jets in the marine atmospheric boundary layer[J]. Journal of the Atmospheric Sciences, 2008, 65(8): 2646−2660. doi: 10.1175/2007JAS2562.1
    [28]
    Semedo A, Saetra Ø, Rutgersson A, et al. Wave-Induced wind in the marine boundary layer[J]. Journal of the Atmospheric Sciences, 2009, 66(8): 2256−2271. doi: 10.1175/2009JAS3018.1
    [29]
    Wu Lichuan, Hristov T, Rutgersson A. Vertical profiles of Wave-Coherent momentum flux and velocity variances in the marine atmospheric boundary layer[J]. Journal of Physical Oceanography, 2018, 48(3): 625−641. doi: 10.1175/JPO-D-17-0052.1
    [30]
    Wu Lichuan, Qiao Fangli. Wind profile in the wave boundary layer and its application in a coupled Atmosphere-Wave model[J]. Journal of Geophysical Research: Oceans, 2022, 127(2): e2021JC018123. doi: 10.1029/2021JC018123
    [31]
    Miles J W. On the generation of surface waves by shear flows[J]. Journal of Fluid Mechanics, 1957, 3(2): 185−204. doi: 10.1017/S0022112057000567
    [32]
    Buckley M P, Veron F. Structure of the airflow above surface waves[J]. Journal of Physical Oceanography, 2016, 46(5): 1377−1397. doi: 10.1175/JPO-D-15-0135.1
    [33]
    Cao Tao, Deng Bingqing, Shen Lian. A simulation-based mechanistic study of turbulent wind blowing over opposing water waves[J]. Journal of Fluid Mechanics, 2020, 901: A27. doi: 10.1017/jfm.2020.591
    [34]
    Cao Tao, Shen Lian. A numerical and theoretical study of wind over fast-propagating water waves[J]. Journal of Fluid Mechanics, 2021, 919: A38. doi: 10.1017/jfm.2021.416
    [35]
    Townsend A A. Flow in a deep turbulent boundary layer over a surface distorted by water waves[J]. Journal of Fluid Mechanics, 1972, 55(4): 719−735. doi: 10.1017/S0022112072002101
    [36]
    Janssen P A E M. Quasi-linear theory of wind-wave generation applied to wave forecasting[J]. Journal of Physical Oceanography, 1991, 21(11): 1631−1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
    [37]
    Zou Zhongshui, Song Jinbao, Qiao Fangli, et al. The Wave-Coherent stress and turbulent structure over swell waves[J]. Journal of Physical Oceanography, 2024, 54(9): 1933−1948. doi: 10.1175/JPO-D-23-0144.1
    [38]
    Hristov T, Ruiz-Plancarte J. Dynamic Balances in a wavy boundary layer[J]. Journal of Physical Oceanography, 2014, 44(12): 3185−3194. doi: 10.1175/JPO-D-13-0209.1
    [39]
    Huang Jian, Zou Zhongshui, Zeng Qingcun, et al. The turbulent structure of the marine atmospheric boundary layer during and before a cold front[J]. Journal of the Atmospheric Sciences, 2021, 78(3): 863−875. doi: 10.1175/JAS-D-19-0314.1
    [40]
    Zou Zhongshui, Zhao Dongliang, Liu Bin, et al. Observation-based parameterization of air-sea fluxes in terms of wind speed and atmospheric stability under low-to-moderate wind conditions[J]. Journal of Geophysical Research: Oceans, 2017, 122(5): 4123−4142. doi: 10.1002/2016JC012399
    [41]
    Zou Zhongshui, Song Jinbao, Li Peiliang, et al. Effects of swell waves on atmospheric boundary layer turbulence: a low wind field study[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5671−5685. doi: 10.1029/2019JC015153
    [42]
    Harris D L. The wave-driven wind[J]. Journal of the Atmospheric Sciences, 1966, 23(6): 688−693. doi: 10.1175/1520-0469(1966)023<0688:TWDW>2.0.CO;2
    [43]
    Holthuijsen L H, Powell M D, Pietrzak J D. Wind and waves in extreme hurricanes[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09003.
    [44]
    Jeffreys H S. On the formation of water waves by wind[J]. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences, 1925, 107(742): 189−206.
    [45]
    Lighthill M J. Physical interpretation of the mathematical theory of wave generation by wind[J]. Journal of Fluid Mechanics, 1962, 14(3): 385−398. doi: 10.1017/S0022112062001305
    [46]
    Janssen P. The Interaction of Ocean Waves and Wind[M]. Cambridge: Cambridge University Press, 2004.
    [47]
    Donelan M A, Hamilton J, Hui W H, et al. Directional spectra of wind-generated ocean waves[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1985, 315(1534): 509−562. doi: 10.1098/rsta.1985.0054
    [48]
    Perry A E, Chong M S. On the mechanism of wall turbulence[J]. Journal of Fluid Mechanics, 1982, 119: 173−217. doi: 10.1017/S0022112082001311
    [49]
    Perry A E, Henbest S, Chong M S. A theoretical and experimental study of wall turbulence[J]. Journal of Fluid Mechanics, 1986, 165: 163−199. doi: 10.1017/S002211208600304X
    [50]
    Perry A E, Marušić I. A wall-wake model for the turbulence structure of boundary layers. Part 1. Extension of the attached eddy hypothesis[J]. Journal of Fluid Mechanics, 1995, 298: 361−388. doi: 10.1017/S0022112095003351
    [51]
    Li D, Katul G G, Gentine P. The k-1 scaling of air temperature spectra in atmospheric surface layer flows[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(694): 496−505. doi: 10.1002/qj.2668
    [52]
    Edson J B, Jampana V, Weller R A, et al. On the exchange of momentum over the open ocean[J]. Journal of Physical Oceanography, 2013, 43(8): 1589−1610. doi: 10.1175/JPO-D-12-0173.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views (24) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return