Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
ZHAO Jiayue,YANG Wei,BAI Junhong. Evaluation system establishment of nursery function for three seagrass beds and their spatial differences in the nearshore Bohai Sea[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: ZHAO Jiayue,YANG Wei,BAI Junhong. Evaluation system establishment of nursery function for three seagrass beds and their spatial differences in the nearshore Bohai Sea[J]. Haiyang Xuebao,2025, 47(x):1–14

Evaluation system establishment of nursery function for three seagrass beds and their spatial differences in the nearshore Bohai Sea

  • Received Date: 2024-10-29
  • Rev Recd Date: 2025-02-28
  • Available Online: 2025-04-15
  • In this study, we conducted comprehensive field surveys in the Bohai Sea’s seagrass beds at Caofeidian, Yellow River mouth, and Juehua Island, gathering data on seagrass growth, water and sediment quality, plankton, benthic life, and juvenile fish. An integrated assessment index system for the nursery function of nearshore seagrass beds was constructed. The seagrass biomass at Caofeidian and Juehua Island was measured at 371.22 g m−2 and 340.05 g m−2, respectively, both of which were significantly higher than that recorded at the Yellow River mouth (161.24 g m−2, p < 0.05). The average abundance and biomass of phytoplankton in each seagrass bed followed the order: Yellow River mouth > Caofeidian > Juehua Island, exhibiting significant spatial differences (p < 0.05). Regarding juvenile fish density, Juehua Island exhibited the highest density, followed by the Yellow River mouth, with Caofeidian showing the lowest density, also demonstrating significant spatial differences (p < 0.05). The nursery function of seagrass beds was best in Juehua Island seagrass bed, followed by Caofeidian seagrass bed and Yellow River mouth seagrass bed. Environmental and biological indicators with significant contributions varied spatially. The seagrass bed in Juehua Island has a good environmental and biological status, with high water transparency, abundant dissolved oxygen, and moderate inorganic nitrogen concentration, and the juvenile fish community indicators all performed well, contributing significantly to the nursery function. The seagrass bed in Yellow River Delta has relatively poor water environment and biological status, with low water transparency, high pH value, and excessive inorganic nitrogen. The biological indicators showed poor plankton diversity characteristics and low proportion of juvenile fish, which became the main negative factors for its nursery function assessment result of only average. The environmental status in Caofeidian seagrass bed is good, with factors such as temperature, inorganic nitrogen, and inorganic phosphorus concentration contributing significantly. However, its biological status is average, and the low number of planktonic animals and juvenile fish is the main negative factor in the nursery function assessment of this area. This study helps to deeply understand and recognize the spatial and temporal differences and driving factors of the nursery function of typical seagrass beds in the Bohai Sea area, and provides effective scientific basis and data support for the protection of seagrass bed ecosystems and the sustainable development of marine fishery resources in China.
  • loading
  • [1]
    刘松林, 江志坚, 吴云超, 等. 海草床育幼功能及其机理[J]. 生态学报, 2015, 35(24): 7931−7940.

    Liu Songlin, Jiang Zhijian, Wu Yunchao, et al. Nursery function of seagrass beds and its mechanisms[J]. Acta Ecologica Sinica, 2015, 35(24): 7931−7940.
    [2]
    王喜涛, 张沛东, 郭栋. 海草床的产卵场功能及其形成机理研究进展[J]. 水产科学, 2018, 37(4): 571−576.

    Wang Xitao, Zhang Peidong, Guo Dong. A review: research progress on spawning ground function and formation mechanisms of a seagrass bed[J]. Fisheries Science, 2018, 37(4): 571−576.
    [3]
    周毅, 江志坚, 邱广龙, 等. 中国海草资源分布现状、退化原因与保护对策[J]. 海洋与湖沼, 2023, 54(5): 1248−1257.

    Zhou Yi, Jiang Zhijian, Qiu Guanglong, et al. Distribution status, degradation reasons and protection countermeasures of seagrass resources in China[J]. Oceanologia et Limnologia Sinica, 2023, 54(5): 1248−1257.
    [4]
    Kaewsrikhaw R, Upanoi T, Prathep A. Ecosystem services and vulnerability assessments of seagrass ecosystems: basic tools for prioritizing conservation management actions using an example from Thailand[J]. Water, 2022, 14(22): 3650. doi: 10.3390/w14223650
    [5]
    Mchenry J, Rassweiler A, Lester S E. Seagrass ecosystem services show complex spatial patterns and associations[J]. Ecosystem Services, 2023, 63: 101543. doi: 10.1016/j.ecoser.2023.101543
    [6]
    Shayka B F, Hesselbarth M H K, Schill S R, et al. The natural capital of seagrass beds in the Caribbean: evaluating their ecosystem services and blue carbon trade potential[J]. Biology Letters, 2023, 19(6): 20230075. doi: 10.1098/rsbl.2023.0075
    [7]
    Bertelli C M, Unsworth R K F. Protecting the hand that feeds us: seagrass (Zostera marina) serves as commercial juvenile fish habitat[J]. Marine Pollution Bulletin, 2014, 83(2): 425−429. doi: 10.1016/j.marpolbul.2013.08.011
    [8]
    James W R, Furman B T, Rodemann J R, et al. Widespread habitat loss leads to ecosystem-scale decrease in trophic function[J]. Global Change Biology, 2024, 30(4): e17263. doi: 10.1111/gcb.17263
    [9]
    Gullström M, Berkström C, Öhman M C, et al. Scale-dependent patterns of variability of a grazing parrotfish (Leptoscarus vaigiensis) in a tropical seagrass-dominated seascape[J]. Marine Biology, 2011, 158(7): 1483−1495. doi: 10.1007/s00227-011-1665-z
    [10]
    Olson A M, Hessing-Lewis M, Haggarty D, et al. Nearshore seascape connectivity enhances seagrass meadow nursery function[J]. Ecological Applications, 2019, 29(5): e01897. doi: 10.1002/eap.1897
    [11]
    Moussa R M, Bertucci F, Jorissen H, et al. Importance of intertidal seagrass beds as nursery area for coral reef fish juveniles (Mayotte, Indian Ocean)[J]. Regional Studies in Marine Science, 2020, 33: 100965. doi: 10.1016/j.rsma.2019.100965
    [12]
    Shoji J, Tomiyama T. Influence of vegetation coverage on dissolved oxygen concentration in seagrass bed in the Seto Inland Sea: possible effects on fish nursery function[J]. Estuaries and Coasts, 2023, 46(4): 1098−1109. doi: 10.1007/s12237-023-01205-x
    [13]
    刘伟妍, 韩秋影, 唐玉琴, 等. 营养盐富集和全球温度升高对海草的影响[J]. 生态学杂志, 2017, 36(4): 1087−1096.

    Liu Weiyan, Han Qiuying, Tang Yuqin, et al. Review of nutrient enrichment and global warming effects on seagrasses[J]. Chinese Journal of Ecology, 2017, 36(4): 1087−1096.
    [14]
    柳杰, 张沛东, 郭栋, 等. 环境因子对海草生长及光合生理影响的研究进展[J]. 水产科学, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013

    Liu Jie, Zhang Peidong, Guo Dong, et al. Research advancement in effects of environmental factors on growth and photosynthetic physiology of sea weed[J]. Fisheries Science, 2012, 31(2): 119−124. doi: 10.3969/j.issn.1003-1111.2012.02.013
    [15]
    江鑫, 潘金华, 韩厚伟, 等. 底质与水深对大叶藻和丛生大叶藻分布的影响[J]. 大连海洋大学学报, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002

    Jiang Xin, Pan Jinhua, Han Houwei, et al. Effects of substrate and water depth on distribution of sea weeds Zostera marina and Z. caespitosa[J]. Journal of Dalian Ocean University, 2012, 27(2): 101−104. doi: 10.3969/j.issn.1000-9957.2012.02.002
    [16]
    Ismail J, Kamal A H M, Idris M H, et al. Zooplankton species composition and diversity in the seagrass habitat of Lawas, Sarawak, Malaysia[J]. Biodiversity Data Journal, 2021, 9: e67449. doi: 10.3897/BDJ.9.e67449
    [17]
    赖敏, 欧阳玉蓉, 吴耀建, 等. 面向区域层面的海洋生态修复综合效益评估指标体系[J]. 生态学报, 2024, 44(16): 6965−6975.

    Lai Min, Ouyang Yurong, Wu Yaojian, et al. Indicator system for assessing the comprehensive benefits of marine ecological restoration at the regional level[J]. Acta Ecologica Sinica, 2024, 44(16): 6965−6975.
    [18]
    李建军, 杨笑波, 魏社林, 等. 裸项栉鰕虎鱼的全人工繁殖及其胚胎发育[J]. 中国实验动物学报, 2008, 16(2): 111−116. doi: 10.3969/j.issn.1005-4847.2008.02.008

    Li Jianjun, Yang Xiaobo, Wei Shelin, et al. Complete artificial propagation and embryonic development of bareneck goby[J]. Acta Laboratorium Animalis Scientia Sinica, 2008, 16(2): 111−116. doi: 10.3969/j.issn.1005-4847.2008.02.008
    [19]
    Li Xiaoxiao, Yang Wei, Li Shanze, et al. Asymmetric responses of spatial variation of different communities to a salinity gradient in coastal wetlands[J]. Marine Environmental Research, 2020, 158: 105008. doi: 10.1016/j.marenvres.2020.105008
    [20]
    Shannon C E, Weaver W. The Mathematical Theory of Communication[M]. Urbana: University of Illinois Press, 1949.
    [21]
    Margalef R. Perspectives in Ecological Theory[M]. Chicago: University of Chicago Press, 1968.
    [22]
    Pielou E C. An introduction to mathematical ecology[J]. Bioscience, 2011, 24(2): 7−12. (查阅网上资料, 未找到本条文献信息, 请确认)
    [23]
    张翔, 李愫. 2015-2020年黄河口近岸海域生态环境监测与分析[J]. 水土保持通报, 2022, 42(3): 139−147. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203019

    Zhang Xiang, Li Su. Monitoring and analysis on ecological environment in near-shore waters of Yellow River estuary during 2015-2020[J]. Bulletin of Soil and Water Conservation, 2022, 42(3): 139−147. doi: 10.3969/j.issn.1000-288X.2022.3.stbctb202203019
    [24]
    李亚倩, 张倩, 杨世民. 2021年渤海浮游植物群落结构及其季节性变化[J]. 海洋科学进展, 2024, 42(2): 337−348. doi: 10.12362/j.issn.1671-6647.20230326001

    Li Yaqian, Zhang Qian, Yang Shimin. Phytoplankton community structure and its seasonal variation in the Bohai Sea in 2021[J]. Advances in Marine Science, 2024, 42(2): 337−348. doi: 10.12362/j.issn.1671-6647.20230326001
    [25]
    栾青杉, 康元德, 王俊. 渤海浮游植物群落的长期变化(1959~2015)[J]. 渔业科学进展, 2018, 39(4): 9−18.

    Luan Qingshan, Kang Yuande, Wang Jun. Long-term changes in the phytoplankton community in the Bohai Sea (1959~2015)[J]. Progress in Fishery Sciences, 2018, 39(4): 9−18.
    [26]
    Liu Songlin, Jiang Zhijian, Zhang Jingping, et al. Effect of nutrient enrichment on the source and composition of sediment organic carbon in tropical seagrass beds in the South China Sea[J]. Marine Pollution Bulletin, 2016, 110(1): 274−280. doi: 10.1016/j.marpolbul.2016.06.054
    [27]
    王彬, 董婧, 刘春洋, 等. 夏初辽东湾海蜇放流区大型水母和主要浮游动物[J]. 渔业科学进展, 2010, 31(5): 83−90. doi: 10.3969/j.issn.1000-7075.2010.05.013

    Wang Bin, Dong Jing, Liu Chunyang, et al. Distribution of giant jellyfish and major zooplankton in jellyfish release area of Liaodong Bay, Bohai Sea in early summer[J]. Progress in Fishery Sciences, 2010, 31(5): 83−90. doi: 10.3969/j.issn.1000-7075.2010.05.013
    [28]
    李轶平, 刘修泽, 王彬, 等. 辽东湾海域大型底栖动物群落特征[J]. 海洋渔业, 2017, 39(3): 267−276. doi: 10.3969/j.issn.1004-2490.2017.03.004

    Li Yiping, Liu Xiuze, Wang Bin, et al. Research on the community characteristics of macrobenthos in the Liaodong Bay[J]. Marine Fisheries, 2017, 39(3): 267−276. doi: 10.3969/j.issn.1004-2490.2017.03.004
    [29]
    张兆衡, 杨薇, 张子玥, 等. 渤海兴城-觉华岛海域海草床典型生物群落特征及其关键环境因子识别[J]. 北京师范大学学报(自然科学版), 2022, 58(1): 90−98.

    Zhang Zhaoheng, Yang Wei, Zhang Ziyue, et al. Characteristics of typical biological communities and identification of key environmental factors in the seagrass bed of Xingcheng-Juehua Island, Bohai Sea[J]. Journal of Beijing Normal University (Natural Science), 2022, 58(1): 90−98.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (18) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return