Citation: | Li Hongchen,Li Ming,Wang Penghao, et al. Integration of machine learning and physical models for the reconstruction of mesoscale eddy sound speed profile[J]. Haiyang Xuebao,2025, 47(x):1–15 |
[1] |
Chen Wen, Zhang Yongchui, Liu Yuyao, et al. Parametric model for eddies-induced sound speed anomaly in five active mesoscale eddy regions[J]. Journal of Geophysical Research: Oceans, 2022, 127(8): e2022JC018408. doi: 10.1029/2022JC018408
|
[2] |
Chen Cheng, Yang Kunde, Duan Rui, et al. Acoustic propagation analysis with a sound speed feature model in the front area of Kuroshio Extension[J]. Applied Ocean Research, 2017, 68: 1−10. doi: 10.1016/j.apor.2017.08.001
|
[3] |
Lin Y T, Lynch J F. Three-dimensional sound propagation and scattering in an ocean with surface and internal waves over range-dependent seafloor[J]. The Journal of the Acoustical Society of America, 2017, 141(5): 3753.
|
[4] |
Alexander P, Duncan A, Boce N, et al. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 131: 84−95. doi: 10.1016/j.dsr2.2016.04.026
|
[5] |
Wu Shuanglin, Li Zhenglin, Qin Jixing, et al. The effects of sound speed profile to the convergence zone in deep water[J]. Journal of Marine Science and Engineering, 2022, 10(3): 424. doi: 10.3390/jmse10030424
|
[6] |
刘玉耀, 陈伟, 陈羽, 等. 水下声速剖面构建方法研究进展[J]. 信息对抗技术, 2024, 3(5): 1−18.
Liu Yuyao, Chen Wei, Chen Yu, et al. Research progress on methods for constructing underwater sound speed profile[J]. Information Countermeasure Technology, 2024, 3(5): 1−18.
|
[7] |
Liu Lei, Peng Shiqiu, Huang Ruixin. Reconstruction of ocean's interior from observed sea surface information[J]. Journal of Geophysical Research: Oceans, 2017, 122(2): 1042−1056. doi: 10.1002/2016JC011927
|
[8] |
Wang Jinbo, Flierl G R, LaCasce J H, et al. Reconstructing the Ocean's Interior from Surface Data[J]. Journal of Physical Oceanography, 2013, 43(8): 1611−1626. doi: 10.1175/JPO-D-12-0204.1
|
[9] |
Leblanc L R, Middleton F H. An underwater acoustic sound velocity data model[J]. The Journal of the Acoustical Society of America, 1980, 67(6): 2055−2062. doi: 10.1121/1.384448
|
[10] |
Chen Cheng, Ma Yuanliang, Liu Ying. Reconstructing sound speed profiles worldwide with sea surface data[J]. Applied Ocean Research, 2018, 77: 26−33. doi: 10.1016/j.apor.2018.05.002
|
[11] |
Liu Yuyao, Chen Yu, Meng Zhou, et al. Performance of single empirical orthogonal function regression method in global sound speed profile inversion and sound field prediction[J]. Applied Ocean Research, 2023, 136: 103598. doi: 10.1016/j.apor.2023.103598
|
[12] |
Fox D N, Teague W J, Barron C N, et al. The modular ocean data assimilation system (MODAS)[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 240−252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
|
[13] |
Park J C, Kennedy R M. Remote sensing of ocean sound speed profiles by a perceptron neural network[J]. IEEE Journal of Oceanic Engineering, 1996, 21(2): 216−224. doi: 10.1109/48.486796
|
[14] |
刘杨范, 王振杰, 赵爽. 多波束测深中声速剖面的分层EOF自适应重构[J]. 声学技术, 2020, 39(3): 372−378.
Liu Yangfan, Wang Zhenjie, Zhao Shuang. Layered-EOFs based adaptive reconstruction of sound velocity profile in multi-beam sounding[J]. Technical Acoustics, 2020, 39(3): 372−378.
|
[15] |
Li Haipeng, Qu Ke, Zhou Jianbo. Reconstructing sound speed profile from remote sensing data: nonlinear inversion based on self-organizing map[J]. IEEE Access, 2021, 9: 109754−109762. doi: 10.1109/ACCESS.2021.3102608
|
[16] |
Ou Zhenyi, Qu Ke, Wang Yafen, et al. Estimating sound speed profile by combining satellite data with in situ sea surface observations[J]. Electronics, 2022, 11(20): 3271. doi: 10.3390/electronics11203271
|
[17] |
李倩倩, 李宏琳, 曹守莲, 等. 基于遥感数据和表层声速的全海深声速剖面反演[J]. 海洋学报, 2022, 44(12): 84−94.
Li Qianqian, Li Honglin, Cao Shoulian, et al. Inversion of the full-depth sound speed profile based on remote sensing data and surface sound speed[J]. Haiyang Xuebao, 2022, 44(12): 84−94.
|
[18] |
Zhao Yu, Xu Pan, Li Guangming, et al. Reconstructing the sound speed profile of South China Sea using remote sensing data and long short-term memory neural networks[J]. Frontiers in Marine Science, 2024, 11: 1375766. doi: 10.3389/fmars.2024.1375766
|
[19] |
Liu Yuyao, Chen Yu, Chen Wei, et al. Inversion of sound speed profile in the Luzon strait by combining single empirical orthogonal function and generalized regression neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 1502405.
|
[20] |
Feng Xiao, Tian Tian, Zhou Mingzhang, et al. Sound speed inversion based on multi-source ocean remote sensing observations and machine learning[J]. Remote Sensing, 2024, 16(5): 814. doi: 10.3390/rs16050814
|
[21] |
李洪臣, 李明, 陈希, 等. 基于机器学习和经验正交函数法的声速剖面快速重构[J]. 海洋与湖沼, 2025, 56(1): 101−111.
Li Hongchen, Li Ming, Chen Xi, et al. Fast reconstruction of sound speed profile based on machine learning and empirical orthogonal function method[J]. Oceanologia et Limnologia Sinica, 2025, 56(1): 101−111.
|
[22] |
朱凤芹, 张海刚, 屈科. 南海东北部中尺度暖涡对声传播的影响[J]. 哈尔滨工程大学学报, 2021, 42(10): 1496−1502. doi: 10.11990/jheu.202007077
Zhu Fengqin, Zhang Haigang, Qu Ke. Influence of mesoscale warm eddies on sound propagation in the northeastern South China Sea[J]. Journal of Harbin Engineering University, 2021, 42(10): 1496−1502. doi: 10.11990/jheu.202007077
|
[23] |
Chen Wen, Zhang Yongchui, Liu Yuyao, et al. Observation of a mesoscale warm eddy impacts acoustic propagation in the slope of the South China Sea[J]. Frontiers in Marine Science, 2022, 9: 1086799. doi: 10.3389/fmars.2022.1086799
|
[24] |
Li Ming, Liu Yuhang, Sun Yiyuan, et al. Quantitative analysis and prediction of the sound field convergence zone in mesoscale eddy environment based on data mining methods[J]. Acta Oceanologica Sinica, 2024, 43(5): 110−120. doi: 10.1007/s13131-024-2328-5
|
[25] |
Ma Xiaodong, Zhang Lei, Xu Weishuai, et al. Analysis of acoustic field characteristics of mesoscale eddies throughout their complete life cycle[J]. Frontiers in Marine Science, 2025, 11: 1471670. doi: 10.3389/fmars.2024.1471670
|
[26] |
White W B, Mccreary J P. On the formation of the Kuroshio meander and its relationship to the large-scale ocean circulation[J]. Deep Sea Research and Oceanographic Abstracts, 1976, 23(1): 33−47. doi: 10.1016/0011-7471(76)90806-8
|
[27] |
Yasuda I, Okuda K, Hirai M. Evolution of a Kuroshio warm-core ring—variability of the hydrographic structure[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1992, 39: S131−S161. doi: 10.1016/S0198-0149(11)80009-9
|
[28] |
Chen C T, Millero F J. Speed of sound in seawater at high pressures[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1129−1135. doi: 10.1121/1.381646
|
[29] |
Wong G S K, Zhu Shiming. Speed of sound in seawater as a function of salinity, temperature, and pressure[J]. The Journal of the Acoustical Society of America, 1995, 97(3): 1732−1736. doi: 10.1121/1.413048
|
[30] |
卢少磊, 刘增宏, 李宏, 等. 全球海洋Argo网格资料集(BOA_Argo)用户手册[Z]. 中国Argo实时资料中心, 28. (查阅网上资料, 未找到本条文献信息, 请确认)
Lu Shaolei, Liu Zenghong, Li Hong, et al. User Manual of global ocean Argo gridded dataset (BOA_Argo)[Z]. 28.
|
[31] |
Chen Xi, Hu Dong, Mao Kefeng, et al. Detailed investigation of the three-dimensional structure of a mesoscale cold eddy in the Kuroshio extension region[J]. Journal of Operational Oceanography, 2018, 11(2): 87−99. doi: 10.1080/1755876X.2018.1505069
|
[32] |
Wang Penghao, Mao Kefeng, Chen Xi, et al. The three-dimensional structure of the mesoscale eddy in the Kuroshio extension region obtained from three datasets[J]. Journal of Marine Science and Engineering, 2022, 10(11): 1754. doi: 10.3390/jmse10111754
|
[33] |
Scott R B, Wang Faming. Direct evidence of an oceanic inverse kinetic energy cascade from satellite altimetry[J]. Journal of Physical Oceanography, 2005, 35(9): 1650−1666. doi: 10.1175/JPO2771.1
|
[34] |
Lapeyre G, Klein P. Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory[J]. Journal of Physical Oceanography, 2006, 36(2): 165−176. doi: 10.1175/JPO2840.1
|
[35] |
张正光. 中尺度涡[D]. 青岛: 中国海洋大学, 2014.
Zhang Zhengguang. Mesoscale eddy[D]. Qingdao: Ocean University of China, 2014.
|
[36] |
Vu B L, Stegner A, Arsouze T. Angular momentum eddy detection and tracking algorithm (AMEDA) and its application to coastal eddy formation[J]. Journal of Atmospheric and Oceanic Technology, 2018, 35(4): 739−762. doi: 10.1175/JTECH-D-17-0010.1
|
[37] |
Isern-Fontanet J, García-Ladona L E, Font J. Identification of marine eddies from altimetric maps[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 772−778. doi: 10.1175/1520-0426(2003)20<772:IOMEFA>2.0.CO;2
|