Citation: | CAI Zhongrui,WEI Zexun,HE Zhiwei, et al. Influence of SCSTF on ITF based on numerical sensitivity experiments of salinity relaxation scheme[J]. Haiyang Xuebao,2025, 47(x):1–19 |
[1] |
Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115−128. doi: 10.1016/j.dynatmoce.2009.12.002
|
[2] |
Gordon A L, Napitu A, Huber B A, et al. Makassar strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3724−3736. doi: 10.1029/2018JC014502
|
[3] |
Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004−2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07001. doi: 10.1029/2008JC005257
|
[4] |
Sprintall J, Gordon A L, Wijffels S E, et al. Detecting change in the Indonesian seas[J]. Frontiers in Marine Science, 2019, 6: 257. doi: 10.3389/fmars.2019.00257
|
[5] |
Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004-2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013. doi: 10.1029/2012JC008096
|
[6] |
Wijffels S E, Meyers G, Godfrey J S. A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange[J]. Journal of Physical Oceanography, 2008, 38(9): 1965−1978. doi: 10.1175/2008jpo3987.1
|
[7] |
Tillinger D, Gordon A L. Transport weighted temperature and internal energy transport of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 224−232. doi: 10.1016/j.dynatmoce.2010.01.002
|
[8] |
Xie Tengxiang, Newton R, Schlosser P, et al. Long-term mean mass, heat and nutrient flux through the Indonesian Seas, based on the Tritium Inventory in the Pacific and Indian Oceans[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3859−3875. doi: 10.1029/2018jc014863
|
[9] |
Zhang Tiecheng, Wang Weiqiang, Xie Qiang, et al. Heat contribution of the Indonesian throughflow to the Indian Ocean[J]. Acta Oceanologica Sinica, 2019, 38(4): 72−79. doi: 10.1007/s13131-019-1414-6
|
[10] |
Fang Guohong, Wei Zexun, Choi B H, et al. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model[J]. Science in China Series D: Earth Sciences, 2003, 46(2): 149−161. doi: 10.1360/03yd9014
|
[11] |
Fang Guohong, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946−954. doi: 10.1007/BF02918693
|
[12] |
Qu Tangdong, Du Yan, Sasaki H. South China Sea throughflow: a heat and freshwater conveyor[J]. Geophysical Research Letters, 2006, 33(23): L23617. doi: 10.1029/2006GL028350
|
[13] |
Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. Interannual variability of the South China Sea Throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14): L14605. doi: 10.1029/2006GL026316
|
[14] |
Fang Guohong, Susanto R D, Wirasantosa S, et al. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007-2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12020. doi: 10.1029/2010JC006225
|
[15] |
Sprintall J, Gordon A L, Flament P, et al. Observations of exchange between the South China Sea and the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05036. doi: 10.1029/2011JC007610
|
[16] |
刘钦燕, 王东晓, 谢强, 等. 印尼贯穿流与南海贯穿流的年代际变化特征及机制[J]. 热带海洋学报, 2007, 26(6): 1−6. doi: 10.3969/j.issn.1009-5470.2007.06.001
Liu Qinyan, Wang Dongxiao, Xie Qiang, et al. Decadal variability of Indonesian throughflow and South China Sea throughflow and its mechanism[J]. Journal of Tropical Oceanography, 2007, 26(6): 1−6. doi: 10.3969/j.issn.1009-5470.2007.06.001
|
[17] |
Xu Danya, Malanotte-Rizzoli P. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): an ocean model study[J]. Dynamics of Atmospheres and Oceans, 2013, 63: 103−130. doi: 10.1016/j.dynatmoce.2013.05.002
|
[18] |
Du Yan, Qu Tangdong. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 233−256. doi: 10.1016/j.dynatmoce.2010.04.001
|
[19] |
He Zhigang, Feng Ming, Wang Dongxiao, et al. Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model[J]. Continental Shelf Research, 2015, 92: 16−22. doi: 10.1016/j.csr.2014.10.007
|
[20] |
Wang Yan, Xu Tengfei, Li Shujiang, et al. Seasonal variation of water transport through the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 47−57. doi: 10.1007/s13131-018-1224-2
|
[21] |
Xu Tengfei, Wei Zexun, Susanto R D, et al. Observed water exchange between the South China Sea and Java Sea through Karimata Strait[J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016608. doi: 10.1029/2020JC016608
|
[22] |
Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824−828. doi: 10.1038/nature02038
|
[23] |
Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11): L11602. doi: 10.1029/2012GL052021
|
[24] |
Tozuka T, Qu Tangdong, Masumoto Y, et al. Impacts of the South China Sea throughflow on seasonal and interannual variations of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 73−85. doi: 10.1016/j.dynatmoce.2008.09.001
|
[25] |
Li Mingting, Wei Jun, Wang Dongxiao, et al. Exploring the importance of the mindoro-sibutu pathway to the upper-layer circulation of the south china sea and the indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5054−5066. doi: 10.1029/2018jc014910
|
[26] |
Jiang Guoqing, Wei Jun, Malanotte-Rizzoli P, et al. Seasonal and interannual variability of the subsurface velocity profile of the Indonesian throughflow at Makassar strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9644−9657. doi: 10.1029/2018jc014884
|
[27] |
Lu Xi, Hu Shijian, Guan Cong, et al. Quantifying the contribution of salinity effect to the seasonal variability of the Makassar Strait throughflow[J]. Geophysical Research Letters, 2023, 50(21): e2023GL105991. doi: 10.1029/2023GL105991
|
[28] |
Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347−404. doi: 10.1016/j.ocemod.2004.08.002
|
[29] |
Haidvogel D B, Arango H, Budgell W P, et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System[J]. Journal of Computational Physics, 2008, 227(7): 3595−3624. doi: 10.1016/j.jcp.2007.06.016
|
[30] |
Shchepetkin A F, McWilliams J C. Computational kernel algorithms for fine-scale, multiprocess, longtime oceanic simulations[J]. Handbook of Numerical Analysis, 2009, 14: 121−183. doi: 10.1016/S1570-8659(08)01202-0
|
[31] |
Haidvogel D B, Arango H G, Hedstrom K, et al. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates[J]. Dynamics of Atmospheres and Oceans, 2000, 32(3/4): 239−281. doi: 10.1016/S0377-0265(00)00049-X
|
[32] |
Chassignet E P, Smith L T, Halliwell G R, et al. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity[J]. Journal of Physical Oceanography, 2003, 33(12): 2504−2526. doi: 10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
|
[33] |
NOAA. World ocean atlas 2013 (NCEI accession 0114815)[R]. NOAA National Centers for Environmental Information, 2015. (查阅网上资料, 请核对出版年信息)(查阅网上资料, 未找到对应的出版地信息, 请确认)
|
[34] |
Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
|
[35] |
Schneider D P, Deser C, Fasullo J, et al. Climate data guide spurs discovery and understanding[J]. Eos, Transactions American Geophysical Union, 2013, 94(13): 121−122. doi: 10.1002/2013EO130001
|
[36] |
Reagan J R, Boyer T P, García H E, et al. World ocean atlas 2023[R]. NOAA National Centers for Environmental Information, 2024. (查阅网上资料, 未找到对应的出版地信息, 请确认)
|
[37] |
Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004−2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013. doi: 10.1029/2012JC008096
|
[38] |
Xu Tengfei, Wei Zexun, Zhao Haifeng, et al. Simulated Indonesian throughflow in Makassar Strait across the SODA3 products[J]. Acta Oceanologica Sinica, 2024, 43(1): 80−98. doi: 10.1007/s13131-023-2186-6
|
[39] |
Wyrtki K. Physical oceanography of the Southeast Asian waters (Vol. 2)[R]. La Jolla: University of California, Scripps Institution of Oceanography, 1961.
|
[40] |
Susanto R D, Wei Zexun, Adi R T, et al. Observations of the Karimata Strait througflow from December 2007 to November 2008[J]. Acta Oceanologica Sinica, 2013, 32(5): 1−6. doi: 10.1007/s13131-013-0307-3
|
[41] |
Wang Weiwen, Wang Dongxiao, Zhou Wen, et al. Impact of the South China Sea throughflow on the Pacific low-latitude western boundary current: a numerical study for seasonal and interannual time scales[J]. Advances in Atmospheric Sciences, 2011, 28(6): 1367−1376. doi: 10.1007/s00376-011-0142-4
|
[42] |
Yu Z, Shen S, McCreary J P, et al. South China Sea throughflow as evidenced by satellite images and numerical experiments[J]. Geophysical Research Letters, 2007, 34(1): L01601. doi: 10.1029/2006GL028103
|
[43] |
Fang Guohong, Wang Yongang, Wei Zexun, et al. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 55−72. doi: 10.1016/j.dynatmoce.2008.09.003
|