Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
CAI Zhongrui,WEI Zexun,HE Zhiwei, et al. Influence of SCSTF on ITF based on numerical sensitivity experiments of salinity relaxation scheme[J]. Haiyang Xuebao,2025, 47(x):1–19
Citation: CAI Zhongrui,WEI Zexun,HE Zhiwei, et al. Influence of SCSTF on ITF based on numerical sensitivity experiments of salinity relaxation scheme[J]. Haiyang Xuebao,2025, 47(x):1–19

Influence of SCSTF on ITF based on numerical sensitivity experiments of salinity relaxation scheme

More Information
  • Corresponding author: Email: xutengfei@fio.org.cn
  • Received Date: 2025-02-15
  • Rev Recd Date: 2025-05-06
  • Available Online: 2025-06-03
  • Observations indicate that the substantial freshwater transported to the southern part of the Makassar Strait by the South China Sea Throughflow (SCSTF) can influence the Indonesian Throughflow (ITF) via the “Freshwater Plug” effect. This article has conducted a series of numerical experiments and discovered that when the salinity in the Karimata Strait increased to that in the Makassar Strait, the volume and freshwater transport through the Karimata Strait are 3.52 Sv and 184.03 mSv, with an increase of 4.31% and a decrease of 27.27% compared with the control experiment, respectively. In the meantime, the volume transport in the upper 50m of the Makassar Strait is 0.11 Sv, with an increase of 34.69%. When the salinity in the Karimata Strait decreased by 0.1−0.6 psu, the volume and freshwater transport through the Karimata Strait are 3.37 Sv and 294.44 mSv, with a decrease of 1.57% and an increase of 16.37% compared with the control experiment, respectively. Also, the volume transport in the upper 50m of the Makassar Strait is 0.07 Sv, with a decrease of 34.69%. These have proved the influence of freshwater transported by SCSTF on ITF. Comparing the salinity relaxation experiment with the topography closed experiment, the salinity relaxation experiment allows for significant changes in the freshwater transport through the Karimata Strait while only modestly affecting the volume transport. This enables an analysis of the impact of SCSTF’s surface water with low salinity on ITF. Meanwhile, we have compared the salinity relaxation experiment with the rainfall closed experiment, and the important impact of low salinity water transport in the South China Sea through the Karimata Strait to the Java Sea on the ITF in boreal winter is further verified.
  • loading
  • [1]
    Gordon A L, Sprintall J, Van Aken H M, et al. The Indonesian throughflow during 2004-2006 as observed by the INSTANT program[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 115−128. doi: 10.1016/j.dynatmoce.2009.12.002
    [2]
    Gordon A L, Napitu A, Huber B A, et al. Makassar strait throughflow seasonal and interannual variability: an overview[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3724−3736. doi: 10.1029/2018JC014502
    [3]
    Sprintall J, Wijffels S E, Molcard R, et al. Direct estimates of the Indonesian throughflow entering the Indian Ocean: 2004−2006[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07001. doi: 10.1029/2008JC005257
    [4]
    Sprintall J, Gordon A L, Wijffels S E, et al. Detecting change in the Indonesian seas[J]. Frontiers in Marine Science, 2019, 6: 257. doi: 10.3389/fmars.2019.00257
    [5]
    Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004-2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013. doi: 10.1029/2012JC008096
    [6]
    Wijffels S E, Meyers G, Godfrey J S. A 20-yr average of the Indonesian Throughflow: Regional currents and the interbasin exchange[J]. Journal of Physical Oceanography, 2008, 38(9): 1965−1978. doi: 10.1175/2008jpo3987.1
    [7]
    Tillinger D, Gordon A L. Transport weighted temperature and internal energy transport of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 224−232. doi: 10.1016/j.dynatmoce.2010.01.002
    [8]
    Xie Tengxiang, Newton R, Schlosser P, et al. Long-term mean mass, heat and nutrient flux through the Indonesian Seas, based on the Tritium Inventory in the Pacific and Indian Oceans[J]. Journal of Geophysical Research: Oceans, 2019, 124(6): 3859−3875. doi: 10.1029/2018jc014863
    [9]
    Zhang Tiecheng, Wang Weiqiang, Xie Qiang, et al. Heat contribution of the Indonesian throughflow to the Indian Ocean[J]. Acta Oceanologica Sinica, 2019, 38(4): 72−79. doi: 10.1007/s13131-019-1414-6
    [10]
    Fang Guohong, Wei Zexun, Choi B H, et al. Interbasin freshwater, heat and salt transport through the boundaries of the East and South China Seas from a variable-grid global ocean circulation model[J]. Science in China Series D: Earth Sciences, 2003, 46(2): 149−161. doi: 10.1360/03yd9014
    [11]
    Fang Guohong, Susanto D, Soesilo I, et al. A note on the South China Sea shallow interocean circulation[J]. Advances in Atmospheric Sciences, 2005, 22(6): 946−954. doi: 10.1007/BF02918693
    [12]
    Qu Tangdong, Du Yan, Sasaki H. South China Sea throughflow: a heat and freshwater conveyor[J]. Geophysical Research Letters, 2006, 33(23): L23617. doi: 10.1029/2006GL028350
    [13]
    Wang Dongxiao, Liu Qinyan, Huang Ruixin, et al. Interannual variability of the South China Sea Throughflow inferred from wind data and an ocean data assimilation product[J]. Geophysical Research Letters, 2006, 33(14): L14605. doi: 10.1029/2006GL026316
    [14]
    Fang Guohong, Susanto R D, Wirasantosa S, et al. Volume, heat, and freshwater transports from the South China Sea to Indonesian seas in the boreal winter of 2007-2008[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12020. doi: 10.1029/2010JC006225
    [15]
    Sprintall J, Gordon A L, Flament P, et al. Observations of exchange between the South China Sea and the Sulu Sea[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05036. doi: 10.1029/2011JC007610
    [16]
    刘钦燕, 王东晓, 谢强, 等. 印尼贯穿流与南海贯穿流的年代际变化特征及机制[J]. 热带海洋学报, 2007, 26(6): 1−6. doi: 10.3969/j.issn.1009-5470.2007.06.001

    Liu Qinyan, Wang Dongxiao, Xie Qiang, et al. Decadal variability of Indonesian throughflow and South China Sea throughflow and its mechanism[J]. Journal of Tropical Oceanography, 2007, 26(6): 1−6. doi: 10.3969/j.issn.1009-5470.2007.06.001
    [17]
    Xu Danya, Malanotte-Rizzoli P. The seasonal variation of the upper layers of the South China Sea (SCS) circulation and the Indonesian through flow (ITF): an ocean model study[J]. Dynamics of Atmospheres and Oceans, 2013, 63: 103−130. doi: 10.1016/j.dynatmoce.2013.05.002
    [18]
    Du Yan, Qu Tangdong. Three inflow pathways of the Indonesian throughflow as seen from the simple ocean data assimilation[J]. Dynamics of Atmospheres and Oceans, 2010, 50(2): 233−256. doi: 10.1016/j.dynatmoce.2010.04.001
    [19]
    He Zhigang, Feng Ming, Wang Dongxiao, et al. Contribution of the Karimata Strait transport to the Indonesian Throughflow as seen from a data assimilation model[J]. Continental Shelf Research, 2015, 92: 16−22. doi: 10.1016/j.csr.2014.10.007
    [20]
    Wang Yan, Xu Tengfei, Li Shujiang, et al. Seasonal variation of water transport through the Karimata Strait[J]. Acta Oceanologica Sinica, 2019, 38(4): 47−57. doi: 10.1007/s13131-018-1224-2
    [21]
    Xu Tengfei, Wei Zexun, Susanto R D, et al. Observed water exchange between the South China Sea and Java Sea through Karimata Strait[J]. Journal of Geophysical Research: Oceans, 2021, 126(2): e2020JC016608. doi: 10.1029/2020JC016608
    [22]
    Gordon A L, Susanto R D, Vranes K. Cool Indonesian throughflow as a consequence of restricted surface layer flow[J]. Nature, 2003, 425(6960): 824−828. doi: 10.1038/nature02038
    [23]
    Gordon A L, Huber B A, Metzger E J, et al. South China Sea throughflow impact on the Indonesian throughflow[J]. Geophysical Research Letters, 2012, 39(11): L11602. doi: 10.1029/2012GL052021
    [24]
    Tozuka T, Qu Tangdong, Masumoto Y, et al. Impacts of the South China Sea throughflow on seasonal and interannual variations of the Indonesian Throughflow[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 73−85. doi: 10.1016/j.dynatmoce.2008.09.001
    [25]
    Li Mingting, Wei Jun, Wang Dongxiao, et al. Exploring the importance of the mindoro-sibutu pathway to the upper-layer circulation of the south china sea and the indonesian throughflow[J]. Journal of Geophysical Research: Oceans, 2019, 124(7): 5054−5066. doi: 10.1029/2018jc014910
    [26]
    Jiang Guoqing, Wei Jun, Malanotte-Rizzoli P, et al. Seasonal and interannual variability of the subsurface velocity profile of the Indonesian throughflow at Makassar strait[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9644−9657. doi: 10.1029/2018jc014884
    [27]
    Lu Xi, Hu Shijian, Guan Cong, et al. Quantifying the contribution of salinity effect to the seasonal variability of the Makassar Strait throughflow[J]. Geophysical Research Letters, 2023, 50(21): e2023GL105991. doi: 10.1029/2023GL105991
    [28]
    Shchepetkin A F, McWilliams J C. The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model[J]. Ocean Modelling, 2005, 9(4): 347−404. doi: 10.1016/j.ocemod.2004.08.002
    [29]
    Haidvogel D B, Arango H, Budgell W P, et al. Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System[J]. Journal of Computational Physics, 2008, 227(7): 3595−3624. doi: 10.1016/j.jcp.2007.06.016
    [30]
    Shchepetkin A F, McWilliams J C. Computational kernel algorithms for fine-scale, multiprocess, longtime oceanic simulations[J]. Handbook of Numerical Analysis, 2009, 14: 121−183. doi: 10.1016/S1570-8659(08)01202-0
    [31]
    Haidvogel D B, Arango H G, Hedstrom K, et al. Model evaluation experiments in the North Atlantic Basin: Simulations in nonlinear terrain-following coordinates[J]. Dynamics of Atmospheres and Oceans, 2000, 32(3/4): 239−281. doi: 10.1016/S0377-0265(00)00049-X
    [32]
    Chassignet E P, Smith L T, Halliwell G R, et al. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): impact of the vertical coordinate choice, reference pressure, and thermobaricity[J]. Journal of Physical Oceanography, 2003, 33(12): 2504−2526. doi: 10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2
    [33]
    NOAA. World ocean atlas 2013 (NCEI accession 0114815)[R]. NOAA National Centers for Environmental Information, 2015. (查阅网上资料, 请核对出版年信息)(查阅网上资料, 未找到对应的出版地信息, 请确认)
    [34]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [35]
    Schneider D P, Deser C, Fasullo J, et al. Climate data guide spurs discovery and understanding[J]. Eos, Transactions American Geophysical Union, 2013, 94(13): 121−122. doi: 10.1002/2013EO130001
    [36]
    Reagan J R, Boyer T P, García H E, et al. World ocean atlas 2023[R]. NOAA National Centers for Environmental Information, 2024. (查阅网上资料, 未找到对应的出版地信息, 请确认)
    [37]
    Susanto R D, Ffield A, Gordon A L, et al. Variability of Indonesian throughflow within Makassar Strait, 2004−2009[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9): C09013. doi: 10.1029/2012JC008096
    [38]
    Xu Tengfei, Wei Zexun, Zhao Haifeng, et al. Simulated Indonesian throughflow in Makassar Strait across the SODA3 products[J]. Acta Oceanologica Sinica, 2024, 43(1): 80−98. doi: 10.1007/s13131-023-2186-6
    [39]
    Wyrtki K. Physical oceanography of the Southeast Asian waters (Vol. 2)[R]. La Jolla: University of California, Scripps Institution of Oceanography, 1961.
    [40]
    Susanto R D, Wei Zexun, Adi R T, et al. Observations of the Karimata Strait througflow from December 2007 to November 2008[J]. Acta Oceanologica Sinica, 2013, 32(5): 1−6. doi: 10.1007/s13131-013-0307-3
    [41]
    Wang Weiwen, Wang Dongxiao, Zhou Wen, et al. Impact of the South China Sea throughflow on the Pacific low-latitude western boundary current: a numerical study for seasonal and interannual time scales[J]. Advances in Atmospheric Sciences, 2011, 28(6): 1367−1376. doi: 10.1007/s00376-011-0142-4
    [42]
    Yu Z, Shen S, McCreary J P, et al. South China Sea throughflow as evidenced by satellite images and numerical experiments[J]. Geophysical Research Letters, 2007, 34(1): L01601. doi: 10.1029/2006GL028103
    [43]
    Fang Guohong, Wang Yongang, Wei Zexun, et al. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model[J]. Dynamics of Atmospheres and Oceans, 2009, 47(1/3): 55−72. doi: 10.1016/j.dynatmoce.2008.09.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(6)

    Article views (22) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return