Citation: | Zhuang Ya,Wang Yang,Quan Xin, et al. Seasonal variations and controlling mechanisms of the carbonate system in Xiaohai Lagoon[J]. Haiyang Xuebao,2025, 47(x):1–18 |
[1] |
Monnin E, Indermühle A, Dällenbach A, et al. Atmospheric CO2 concentrations over the Last Glacial Termination[J]. Science, 2001, 291(5501): 112−114. doi: 10.1126/science.291.5501.112
|
[2] |
Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301−5369. doi: 10.5194/essd-15-5301-2023
|
[3] |
Caldeira K, Wickett M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
|
[4] |
Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1: 169−192. doi: 10.1146/annurev.marine.010908.163834
|
[5] |
Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3: 123−145. doi: 10.1146/annurev-marine-120709-142723
|
[6] |
Yan Qi, Cheng Tingting, Song Junting, et al. Internal nutrient loading is a potential source of eutrophication in Shenzhen Bay, China[J]. Ecological Indicators, 2021, 127: 107736. doi: 10.1016/j.ecolind.2021.107736
|
[7] |
Laruelle G G, Dürr H H, Slomp C P, et al. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves[J]. Geophysical Research Letters, 2010, 37(15): L15607.
|
[8] |
Boynton W R, Murray L, Hagy J D, et al. A comparative analysis of eutrophication patterns in a temperate coastal lagoon[J]. Estuaries, 1996, 19(2): 408−421. doi: 10.2307/1352459
|
[9] |
Hu Xinping, Cai Weijun. Estuarine acidification and minimum buffer zone—a conceptual study[J]. Geophysical Research Letters, 2013, 40(19): 5176−5181. doi: 10.1002/grl.51000
|
[10] |
Martínez-Trejo J A, Cardoso-Mohedano J G, Sanchez-Cabeza J A, et al. Variability of dissolved inorganic carbon in the most extensive karst estuarine-lagoon system of the southern Gulf of Mexico[J]. Estuaries and Coasts, 2024, 47(8): 2573−2588. doi: 10.1007/s12237-024-01384-1
|
[11] |
Yao Hongming, McCutcheon M R, Staryk C J, et al. Hydrologic controls on CO2 chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of Mexico[J]. Limnology and Oceanography, 2020, 65(6): 1380−1398. doi: 10.1002/lno.11394
|
[12] |
Hsieh H H, Chuang M H, Shih Y Y, et al. Eutrophication and hypoxia in tropical Negombo Lagoon, Sri Lanka[J]. Frontiers in Marine Science, 2021, 8: 678832. doi: 10.3389/fmars.2021.678832
|
[13] |
Laruelle G G, Dürr H H, Lauerwald R, et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins[J]. Hydrology and Earth System Sciences, 2013, 17(5): 2029−2051. doi: 10.5194/hess-17-2029-2013
|
[14] |
Chen C T A, Huang T H, Chen Y C, et al. Air–sea exchanges of CO2 in the world’s coastal seas[J]. Biogeosciences, 2013, 10(10): 6509−6544. doi: 10.5194/bg-10-6509-2013
|
[15] |
海南省万宁市生态环境局. 2023年万宁市生态环境质量状况[EB/OL]. (2024-01-23)[2024-11-11]. https://wanning.hainan.gov.cn/wanning/zfxxgk/sgbmgk/sthjbh/gkml/202401/t20240124_3578456.html.
Ecological Environment Bureau of Wanning City, Hainan Province. Ecological environment quality of Wanning city in 2023[EB/OL]. (2024-01-23)[2024-11-11]. https://wanning.hainan.gov.cn/wanning/zfxxgk/sgbmgk/sthjbh/gkml/202401/t20240124_3578456.html. (查阅网上资料,未找到本条文献英文信息,请确认)
|
[16] |
宋德卓, 薛积彬, 孙升升, 等. 海南小海潟湖沉积物地球化学揭示的近千年气候环境变化[J]. 地球化学, 2022, 51(2): 202−212.
Song Dezhuo, Xue Jibin, Sun Shengsheng, et al. Climate and environmental changes revealed by sedimentary geochemical elements of the Xiaohai Lagoon(Hainan) during the last millennium[J]. Geochimica, 2022, 51(2): 202−212.
|
[17] |
Xue Bosheng, Wang Zhili, Lu Yongjun, et al. Turbulent mixing in a choked shallow lagoon and the impacts of remediation engineering[J]. Applied Ocean Research, 2023, 138: 103643. doi: 10.1016/j.apor.2023.103643
|
[18] |
林钟扬, 倪建宇, 时连强, 等. 海南小海表层沉积环境及重金属污染综合评价[J]. 海洋学研究, 2011, 29(2): 12−23. doi: 10.3969/j.issn.1001-909X.2011.02.002
Lin Zhongyang, Ni Jianyu, Shi Lianqiang, et al. Comprehensive evaluation of the environment and the heavy metals pollution in the surface sediments of Xiaohai, Hainan Province[J]. Journal of Marine Sciences, 2011, 29(2): 12−23. doi: 10.3969/j.issn.1001-909X.2011.02.002
|
[19] |
刘兴健, 葛晨东. 海南岛小海潟湖沉积环境演变研究[J]. 海洋通报, 2007, 26(4): 71−79. doi: 10.3969/j.issn.1001-6392.2007.04.010
Liu Xingjian, Ge Chendong. Sedimentary environment evolvement of Xiaohai Lagoon in the Hainan Island[J]. Marine Science Bulletin, 2007, 26(4): 71−79. doi: 10.3969/j.issn.1001-6392.2007.04.010
|
[20] |
郭英海, 李壮福, 张德高, 等. 海南岛万宁小海的障壁海岸沉积[J]. 中国矿业大学学报, 1999, 28(5): 461−464. doi: 10.3321/j.issn:1000-1964.1999.05.013
Guo Yinghai, Li Zhuangfu, Zhang Degao, et al. Barrier coast deposition in Wanning Xiaohai of Hainan Island[J]. Journal of China University of Mining & Technology, 1999, 28(5): 461−464. doi: 10.3321/j.issn:1000-1964.1999.05.013
|
[21] |
胡辉, 胡方西, 汪思明, 等. 海南岛东海岸小海澙湖水文基本特征[J]. 热带海洋, 1997, 16(4): 54−61.
Hu Hui, Hu Fangxi, Wang Siming, et al. Basic hyderologic characterisitics of Xiaohai Lagoon in Hainan Island[J]. Tropic Oceanology, 1997, 16(4): 54−61.
|
[22] |
朱志雄, 骆丽珍, 陈石泉, 等. 海南小海海水富营养化和重金属特征分析与评价[J]. 海洋湖沼通报, 2020(5): 131−138.
Zhu Zhixiong, Luo Lizhen, Chen Shiquan, et al. Analysis and evaluation of eutrophication of seawater and characteristics of heavy metal in Xiaohai, Hainan[J]. Transactions of Oceanology and Limnology, 2020(5): 131−138.
|
[23] |
李伟光, 张京红, 刘少军, 等. 海南岛干旱的气象特征及监测指标[J]. 热带生物学报, 2022, 13(4): 324−330. doi: 10.3969/j.issn.1674-7054.2022.4.hnrdnydxxb202204002
Li Weiguang, Zhang Jinghong, Liu Shaojun, et al. Meteorological characteristics and monitoring index of drought in Hainan Island[J]. Journal of Tropical Biology, 2022, 13(4): 324−330. doi: 10.3969/j.issn.1674-7054.2022.4.hnrdnydxxb202204002
|
[24] |
Dickson A G, Sabine C L, Christian J R. Guide to Best Practices for Ocean CO2 Measurements[M]. Sidney: North Pacific Marine Science Organization, 2007: 191.
|
[25] |
Wang Z A, Cai Weijun. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary(the Duplin River): a marsh CO2 pump[J]. Limnology and Oceanography, 2004, 49(2): 341−354. doi: 10.4319/lo.2004.49.2.0341
|
[26] |
Pai Sucheng, Gong G C, Liu K K. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine[J]. Marine Chemistry, 1993, 41(4): 343−351. doi: 10.1016/0304-4203(93)90266-Q
|
[27] |
Labasque T, Chaumery C, Aminot A, et al. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability[J]. Marine Chemistry, 2004, 88(1/2): 53−60.
|
[28] |
Cao Zhimian, Dai Minhan. Shallow-depth CaCO3 dissolution: evidence from excess calcium in the South China Sea and its export to the Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(2): GB2019.
|
[29] |
Lewis E R, Wallace D W R. Program developed for CO2 system calculations[EB/OL]. https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/CO2SYS/co2rprt.html, 1998. (查阅网上资料,未找到本条文献引用日期信息,请确认)
|
[30] |
Orr J C, Epitalon J M, Dickson A G, et al. Routine uncertainty propagation for the marine carbon dioxide system[J]. Marine Chemistry, 2018, 207: 84−107. doi: 10.1016/j.marchem.2018.10.006
|
[31] |
Millero F J. Carbonate constants for estuarine waters[J]. Marine and Freshwater Research, 2010, 61(2): 139−142. doi: 10.1071/MF09254
|
[32] |
Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(5): 755−766. doi: 10.1016/0198-0149(90)90004-F
|
[33] |
Dickson A G, Riley J P. The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water—Kw[J]. Marine Chemistry, 1979, 7(2): 89−99. doi: 10.1016/0304-4203(79)90001-X
|
[34] |
Uppström L R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(2): 161−162. doi: 10.1016/0011-7471(74)90074-6
|
[35] |
Benson B B, Krause Jr D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere[J]. Limnology and Oceanography, 1984, 29(3): 620−632. doi: 10.4319/lo.1984.29.3.0620
|
[36] |
Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science, 1983, 283(7): 780−799. doi: 10.2475/ajs.283.7.780
|
[37] |
Jiang Liqing, Cai Weijun, Wang Yongchen. A comparative study of carbon dioxide degassing in river‐ and marine‐dominated estuaries[J]. Limnology and Oceanography, 2008, 53(6): 2603−2615. doi: 10.4319/lo.2008.53.6.2603
|
[38] |
Hartman B, Hammond D E. Gas exchange in San Francisco Bay[J]. Hydrobiologia, 1985, 129(1): 59−68. doi: 10.1007/BF00048687
|
[39] |
Pond S. The exchanges of momentum, heat and moisture at the ocean-atmosphere interface[C]//Proceedings of the Numerical Models of Ocean Circulation, Proceedings of the Symposium National Academy of Sciences. Washington District of Columbia, 1975: 26−88. (查阅网上资料, 未找到本条文献信息, 请确认)
|
[40] |
Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351−362. doi: 10.4319/lom.2014.12.351
|
[41] |
Guo Xianghui, Wong G T F. Carbonate chemistry in the Northern South China Sea Shelf-sea in June 2010[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 119−130. doi: 10.1016/j.dsr2.2015.02.024
|
[42] |
赵军鹏, 龚文平, 王道儒. 海南岛南渡江河口的盐水入侵[J]. 海洋学报, 2013, 35(5): 14−28. doi: 10.3969/j.issn.0253-4193.2013.05.002
Zhao Junpeng, Gong Wenping, Wang Daoru. Saline intrusion in the Nandu River Estuary, Hainan Island[J]. Haiyang Xuebao, 2013, 35(5): 14−28. doi: 10.3969/j.issn.0253-4193.2013.05.002
|
[43] |
Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.
|
[44] |
Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401−428. doi: 10.2475/ajs.287.5.401
|
[45] |
Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.
|
[46] |
Cai Weijun, Guo Xianghui, Chen C T A, et al. A comparative overview of weathering intensity and HCO3− flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang(Pearl) and Mississippi Rivers[J]. Continental Shelf Research, 2008, 28(12): 1538−1549. doi: 10.1016/j.csr.2007.10.014
|
[47] |
彭精诚, 郑栩, 吴卫华. 热带海南岛地表和地下化学风化: 对全球碳循环及海水Sr同位素演化研究的启示[J]. 高校地质学报, 2022, 28(6): 849−860.
Peng Jingcheng, Zheng Xu, Wu Weihua. Surface and subsurface chemical weathering in tropical Hainan Island: implications for global carbon cycle and seawater Sr isotope evolution[J]. Geological Journal of China Universities, 2022, 28(6): 849−860.
|
[48] |
Reddy S K K, Gupta H, Reddy D V. Dissolved inorganic carbon export by mountainous tropical rivers of the Western Ghats, India[J]. Chemical Geology, 2019, 530: 119316. doi: 10.1016/j.chemgeo.2019.119316
|
[49] |
Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3−30.
|
[50] |
Yao Hongming, Hu Xinping. Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary[J]. Limnology and Oceanography, 2017, 62(S1): S112−S130.
|
[51] |
Liu Songlin, Liang Jiening, Jiang Zhijian, et al. Temporal and spatial variations of air-sea CO2 fluxes and their key influence factors in seagrass meadows of Hainan Island, South China Sea[J]. Science of the Total Environment, 2024, 910: 168684. doi: 10.1016/j.scitotenv.2023.168684
|
[52] |
Gupta G V M, Sarma V V S S, Robin R S, et al. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon(Chilka Lake, India)[J]. Biogeochemistry, 2008, 87(3): 265−285. doi: 10.1007/s10533-008-9183-x
|
[53] |
Tokoro T, Hosokawa S, Miyoshi E, et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation[J]. Global Change Biology, 2014, 20(6): 1873−1884. doi: 10.1111/gcb.12543
|
[54] |
Van Dam B, Polsenaere P, Barreras-Apodaca A, et al. Global trends in air-water CO2 exchange over seagrass meadows revealed by atmospheric eddy covariance[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006848. doi: 10.1029/2020GB006848
|
[55] |
Erbas T, Marques A, Abril G. A CO2 sink in a tropical coastal lagoon impacted by cultural eutrophication and upwelling[J]. Estuarine, Coastal and Shelf Science, 2021, 263: 107633. doi: 10.1016/j.ecss.2021.107633
|
[56] |
Cotovicz Jr L C, Knoppers B A, Régis C R, et al. Eutrophication overcoming carbonate precipitation in a tropical hypersaline coastal lagoon acting as a CO2 sink(Araruama Lagoon, SE Brazil)[J]. Biogeochemistry, 2021, 156(2): 231−254. doi: 10.1007/s10533-021-00842-3
|
[57] |
Maher D T, Eyre B D. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air‐water CO2 flux[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1032.
|
[58] |
Koné Y J M, Abril G, Kouadio K N, et al. Seasonal variability of carbon dioxide in the rivers and lagoons of ivory coast(West Africa)[J]. Estuaries and Coasts, 2009, 32(2): 246−260. doi: 10.1007/s12237-008-9121-0
|
[59] |
Chen C T A, Huang T H, Chen Y C, et al. Air–sea exchanges of CO2 in the world’s coastal seas[J]. Biogeosciences, 2013, 10(10): 6509-6544. (查阅网上资料, 本条文献与第14条文献重复, 请确认)
|
[60] |
Aguirrezabala-Cámpano T, Gonzalez-Valencia R, García-Pérez V, et al. Spatial and seasonal dynamics of the methane cycle in a tropical coastal lagoon and its tributary river[J]. Science of the Total Environment, 2022, 825: 154074. doi: 10.1016/j.scitotenv.2022.154074
|
[61] |
Vallejo B, Ponce R, Ortega T, et al. Greenhouse gas dynamics in a coastal lagoon during the recovery of the macrophyte meadow(Mar Menor, SE Spain)[J]. Science of the Total Environment, 2021, 779: 146314. doi: 10.1016/j.scitotenv.2021.146314
|
[62] |
Polsenaere P, Delille B, Poirier D, et al. Seasonal, diurnal, and tidal variations of dissolved inorganic carbon and pCO2 in surface waters of a temperate coastal lagoon(Arcachon, SW France)[J]. Estuaries and Coasts, 2023, 46(1): 128−148. doi: 10.1007/s12237-022-01121-6
|
[63] |
Vachon D, Sadro S, Bogard M J, et al. Paired O2–CO2 measurements provide emergent insights into aquatic ecosystem function[J]. Limnology and Oceanography Letters, 2020, 5(4): 287−294. doi: 10.1002/lol2.10135
|
[64] |
Broecker W S, Peng T H. Gas exchange rates between air and sea[J]. Tellus, 1974, 26(1/2): 21−35.
|
[65] |
Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Oxford: Gulf Professional Publishing, 2001.
|
[66] |
Jones D C, Ito T, Takano Y, et al. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide[J]. Global Biogeochemical Cycles, 2014, 28(11): 1163−1178. doi: 10.1002/2014GB004813
|
[67] |
Wang Xilong, Du Jinzhou. Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4366−4382. doi: 10.1002/2016GC006502
|
[68] |
邱广龙, 范航清, 李宗善, 等. 濒危海草贝克喜盐草的种群动态及土壤种子库——以广西珍珠湾为例[J]. 生态学报, 2013, 33(19): 6163−6172. doi: 10.5846/stxb201306091489
Qiu Guanglong, Fan Hangqing, Li Zongshan, et al. Population dynamics and seed banks of the threatened seagrass Halophila beccarii in Pearl Bay, Guangxi[J]. Acta Ecologica Sinica, 2013, 33(19): 6163−6172. doi: 10.5846/stxb201306091489
|
[69] |
耿晓晓. 海南岛贝克喜盐草的空间分布特性及保护价值研究[D]. 三亚: 海南热带海洋学院, 2023.
Geng Xiaoxiao. Spatial distribution characteristics and protection value of Halophila beccarii around Hainan Island[D]. Sanya: Hainan Tropical Ocean University, 2023.
|
[70] |
Delille B, Delille D, Fiala M, et al. Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed[J]. Polar Biology, 2000, 23(10): 706−716. doi: 10.1007/s003000000142
|
[71] |
Setchell W A. Ruppia and its environmental factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1924, 10(6): 286−288.
|
[72] |
Menéndez M, Martı́nez M, Comı́n F A. A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon[J]. Journal of Experimental Marine Biology and Ecology, 2001, 256(1): 123−136. doi: 10.1016/S0022-0981(00)00313-0
|
[73] |
Middelboe A L, Hansen P J. High pH in shallow-water macroalgal habitats[J]. Marine Ecology Progress Series, 2007, 338: 107−117. doi: 10.3354/meps338107
|
[74] |
Björk M, Axelsson L, Beer S. Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast?[J]. Marine Ecology Progress Series, 2004, 284: 109−116. doi: 10.3354/meps284109
|
[75] |
Su Jianzhong, Cai Weijun, Brodeur J, et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling[J]. Nature Geoscience, 2020, 13(6): 441−447. doi: 10.1038/s41561-020-0584-3
|