Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Zhuang Ya,Wang Yang,Quan Xin, et al. Seasonal variations and controlling mechanisms of the carbonate system in Xiaohai Lagoon[J]. Haiyang Xuebao,2025, 47(x):1–18
Citation: Zhuang Ya,Wang Yang,Quan Xin, et al. Seasonal variations and controlling mechanisms of the carbonate system in Xiaohai Lagoon[J]. Haiyang Xuebao,2025, 47(x):1–18

Seasonal variations and controlling mechanisms of the carbonate system in Xiaohai Lagoon

  • Received Date: 2024-11-20
  • Rev Recd Date: 2025-02-24
  • Available Online: 2025-04-24
  • We conducted two surveys on the carbonate system in Xiaohai, the largest lagoon on Hainan Island, during April and October 2023. The aims were to evaluate the seasonal differences in riverine inorganic carbon export flux, air-sea carbon dioxide (CO2) flux, and coastal acidification as well as their controlling mechanisms. The results indicate that the surrounding major rivers deliver 0.682×109 mol dissolved inorganic carbon (DIC), 0.571×109 mol total alkalinity, and 0.195×109 mol calcium ions to Xiaohai Lagoon annually, and multiple factors result in a high DIC areal yield among other estuaries around the world (47/134). The lagoon water was a CO2 source in April, but turned into a sink in October, with an annual mean CO2 flux (0.9 mol·m−2·yr−1) significantly lower than most tropical lagoons worldwide. In April, some acidification events occurred in the southeastern lagoon and the northern tidal channel. In October, strong photosynthesis by benthic seagrass, macroalgae, and phytoplankton alleviated estuarine acidification, resulting in a supersaturation of dissolved oxygen (107%−136%), a deficit of partial pressure of CO2 as low as 116 μatm, and an elevated pH (8.41±0.14) significantly higher than the offshore seawater. Our study will provide scientific support for the carbon cycle in tropical lagoons and ecological environment management in Xiaohai Lagoon.
  • loading
  • [1]
    Monnin E, Indermühle A, Dällenbach A, et al. Atmospheric CO2 concentrations over the Last Glacial Termination[J]. Science, 2001, 291(5501): 112−114. doi: 10.1126/science.291.5501.112
    [2]
    Friedlingstein P, O'Sullivan M, Jones M W, et al. Global carbon budget 2023[J]. Earth System Science Data, 2023, 15(12): 5301−5369. doi: 10.5194/essd-15-5301-2023
    [3]
    Caldeira K, Wickett M E. Oceanography: anthropogenic carbon and ocean pH[J]. Nature, 2003, 425(6956): 365. doi: 10.1038/425365a
    [4]
    Doney S C, Fabry V J, Feely R A, et al. Ocean acidification: the other CO2 problem[J]. Annual Review of Marine Science, 2009, 1: 169−192. doi: 10.1146/annurev.marine.010908.163834
    [5]
    Cai Weijun. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3: 123−145. doi: 10.1146/annurev-marine-120709-142723
    [6]
    Yan Qi, Cheng Tingting, Song Junting, et al. Internal nutrient loading is a potential source of eutrophication in Shenzhen Bay, China[J]. Ecological Indicators, 2021, 127: 107736. doi: 10.1016/j.ecolind.2021.107736
    [7]
    Laruelle G G, Dürr H H, Slomp C P, et al. Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves[J]. Geophysical Research Letters, 2010, 37(15): L15607.
    [8]
    Boynton W R, Murray L, Hagy J D, et al. A comparative analysis of eutrophication patterns in a temperate coastal lagoon[J]. Estuaries, 1996, 19(2): 408−421. doi: 10.2307/1352459
    [9]
    Hu Xinping, Cai Weijun. Estuarine acidification and minimum buffer zone—a conceptual study[J]. Geophysical Research Letters, 2013, 40(19): 5176−5181. doi: 10.1002/grl.51000
    [10]
    Martínez-Trejo J A, Cardoso-Mohedano J G, Sanchez-Cabeza J A, et al. Variability of dissolved inorganic carbon in the most extensive karst estuarine-lagoon system of the southern Gulf of Mexico[J]. Estuaries and Coasts, 2024, 47(8): 2573−2588. doi: 10.1007/s12237-024-01384-1
    [11]
    Yao Hongming, McCutcheon M R, Staryk C J, et al. Hydrologic controls on CO2 chemistry and flux in subtropical lagoonal estuaries of the northwestern Gulf of Mexico[J]. Limnology and Oceanography, 2020, 65(6): 1380−1398. doi: 10.1002/lno.11394
    [12]
    Hsieh H H, Chuang M H, Shih Y Y, et al. Eutrophication and hypoxia in tropical Negombo Lagoon, Sri Lanka[J]. Frontiers in Marine Science, 2021, 8: 678832. doi: 10.3389/fmars.2021.678832
    [13]
    Laruelle G G, Dürr H H, Lauerwald R, et al. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins[J]. Hydrology and Earth System Sciences, 2013, 17(5): 2029−2051. doi: 10.5194/hess-17-2029-2013
    [14]
    Chen C T A, Huang T H, Chen Y C, et al. Air–sea exchanges of CO2 in the world’s coastal seas[J]. Biogeosciences, 2013, 10(10): 6509−6544. doi: 10.5194/bg-10-6509-2013
    [15]
    海南省万宁市生态环境局. 2023年万宁市生态环境质量状况[EB/OL]. (2024-01-23)[2024-11-11]. https://wanning.hainan.gov.cn/wanning/zfxxgk/sgbmgk/sthjbh/gkml/202401/t20240124_3578456.html.

    Ecological Environment Bureau of Wanning City, Hainan Province. Ecological environment quality of Wanning city in 2023[EB/OL]. (2024-01-23)[2024-11-11]. https://wanning.hainan.gov.cn/wanning/zfxxgk/sgbmgk/sthjbh/gkml/202401/t20240124_3578456.html. (查阅网上资料,未找到本条文献英文信息,请确认)
    [16]
    宋德卓, 薛积彬, 孙升升, 等. 海南小海潟湖沉积物地球化学揭示的近千年气候环境变化[J]. 地球化学, 2022, 51(2): 202−212.

    Song Dezhuo, Xue Jibin, Sun Shengsheng, et al. Climate and environmental changes revealed by sedimentary geochemical elements of the Xiaohai Lagoon(Hainan) during the last millennium[J]. Geochimica, 2022, 51(2): 202−212.
    [17]
    Xue Bosheng, Wang Zhili, Lu Yongjun, et al. Turbulent mixing in a choked shallow lagoon and the impacts of remediation engineering[J]. Applied Ocean Research, 2023, 138: 103643. doi: 10.1016/j.apor.2023.103643
    [18]
    林钟扬, 倪建宇, 时连强, 等. 海南小海表层沉积环境及重金属污染综合评价[J]. 海洋学研究, 2011, 29(2): 12−23. doi: 10.3969/j.issn.1001-909X.2011.02.002

    Lin Zhongyang, Ni Jianyu, Shi Lianqiang, et al. Comprehensive evaluation of the environment and the heavy metals pollution in the surface sediments of Xiaohai, Hainan Province[J]. Journal of Marine Sciences, 2011, 29(2): 12−23. doi: 10.3969/j.issn.1001-909X.2011.02.002
    [19]
    刘兴健, 葛晨东. 海南岛小海潟湖沉积环境演变研究[J]. 海洋通报, 2007, 26(4): 71−79. doi: 10.3969/j.issn.1001-6392.2007.04.010

    Liu Xingjian, Ge Chendong. Sedimentary environment evolvement of Xiaohai Lagoon in the Hainan Island[J]. Marine Science Bulletin, 2007, 26(4): 71−79. doi: 10.3969/j.issn.1001-6392.2007.04.010
    [20]
    郭英海, 李壮福, 张德高, 等. 海南岛万宁小海的障壁海岸沉积[J]. 中国矿业大学学报, 1999, 28(5): 461−464. doi: 10.3321/j.issn:1000-1964.1999.05.013

    Guo Yinghai, Li Zhuangfu, Zhang Degao, et al. Barrier coast deposition in Wanning Xiaohai of Hainan Island[J]. Journal of China University of Mining & Technology, 1999, 28(5): 461−464. doi: 10.3321/j.issn:1000-1964.1999.05.013
    [21]
    胡辉, 胡方西, 汪思明, 等. 海南岛东海岸小海澙湖水文基本特征[J]. 热带海洋, 1997, 16(4): 54−61.

    Hu Hui, Hu Fangxi, Wang Siming, et al. Basic hyderologic characterisitics of Xiaohai Lagoon in Hainan Island[J]. Tropic Oceanology, 1997, 16(4): 54−61.
    [22]
    朱志雄, 骆丽珍, 陈石泉, 等. 海南小海海水富营养化和重金属特征分析与评价[J]. 海洋湖沼通报, 2020(5): 131−138.

    Zhu Zhixiong, Luo Lizhen, Chen Shiquan, et al. Analysis and evaluation of eutrophication of seawater and characteristics of heavy metal in Xiaohai, Hainan[J]. Transactions of Oceanology and Limnology, 2020(5): 131−138.
    [23]
    李伟光, 张京红, 刘少军, 等. 海南岛干旱的气象特征及监测指标[J]. 热带生物学报, 2022, 13(4): 324−330. doi: 10.3969/j.issn.1674-7054.2022.4.hnrdnydxxb202204002

    Li Weiguang, Zhang Jinghong, Liu Shaojun, et al. Meteorological characteristics and monitoring index of drought in Hainan Island[J]. Journal of Tropical Biology, 2022, 13(4): 324−330. doi: 10.3969/j.issn.1674-7054.2022.4.hnrdnydxxb202204002
    [24]
    Dickson A G, Sabine C L, Christian J R. Guide to Best Practices for Ocean CO2 Measurements[M]. Sidney: North Pacific Marine Science Organization, 2007: 191.
    [25]
    Wang Z A, Cai Weijun. Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary(the Duplin River): a marsh CO2 pump[J]. Limnology and Oceanography, 2004, 49(2): 341−354. doi: 10.4319/lo.2004.49.2.0341
    [26]
    Pai Sucheng, Gong G C, Liu K K. Determination of dissolved oxygen in seawater by direct spectrophotometry of total iodine[J]. Marine Chemistry, 1993, 41(4): 343−351. doi: 10.1016/0304-4203(93)90266-Q
    [27]
    Labasque T, Chaumery C, Aminot A, et al. Spectrophotometric Winkler determination of dissolved oxygen: re-examination of critical factors and reliability[J]. Marine Chemistry, 2004, 88(1/2): 53−60.
    [28]
    Cao Zhimian, Dai Minhan. Shallow-depth CaCO3 dissolution: evidence from excess calcium in the South China Sea and its export to the Pacific Ocean[J]. Global Biogeochemical Cycles, 2011, 25(2): GB2019.
    [29]
    Lewis E R, Wallace D W R. Program developed for CO2 system calculations[EB/OL]. https://www.ncei.noaa.gov/access/ocean-carbon-acidification-data-system/oceans/CO2SYS/co2rprt.html, 1998. (查阅网上资料,未找到本条文献引用日期信息,请确认)
    [30]
    Orr J C, Epitalon J M, Dickson A G, et al. Routine uncertainty propagation for the marine carbon dioxide system[J]. Marine Chemistry, 2018, 207: 84−107. doi: 10.1016/j.marchem.2018.10.006
    [31]
    Millero F J. Carbonate constants for estuarine waters[J]. Marine and Freshwater Research, 2010, 61(2): 139−142. doi: 10.1071/MF09254
    [32]
    Dickson A G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1990, 37(5): 755−766. doi: 10.1016/0198-0149(90)90004-F
    [33]
    Dickson A G, Riley J P. The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water—Kw[J]. Marine Chemistry, 1979, 7(2): 89−99. doi: 10.1016/0304-4203(79)90001-X
    [34]
    Uppström L R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(2): 161−162. doi: 10.1016/0011-7471(74)90074-6
    [35]
    Benson B B, Krause Jr D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere[J]. Limnology and Oceanography, 1984, 29(3): 620−632. doi: 10.4319/lo.1984.29.3.0620
    [36]
    Mucci A. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure[J]. American Journal of Science, 1983, 283(7): 780−799. doi: 10.2475/ajs.283.7.780
    [37]
    Jiang Liqing, Cai Weijun, Wang Yongchen. A comparative study of carbon dioxide degassing in river‐ and marine‐dominated estuaries[J]. Limnology and Oceanography, 2008, 53(6): 2603−2615. doi: 10.4319/lo.2008.53.6.2603
    [38]
    Hartman B, Hammond D E. Gas exchange in San Francisco Bay[J]. Hydrobiologia, 1985, 129(1): 59−68. doi: 10.1007/BF00048687
    [39]
    Pond S. The exchanges of momentum, heat and moisture at the ocean-atmosphere interface[C]//Proceedings of the Numerical Models of Ocean Circulation, Proceedings of the Symposium National Academy of Sciences. Washington District of Columbia, 1975: 26−88. (查阅网上资料, 未找到本条文献信息, 请确认)
    [40]
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean revisited[J]. Limnology and Oceanography: Methods, 2014, 12(6): 351−362. doi: 10.4319/lom.2014.12.351
    [41]
    Guo Xianghui, Wong G T F. Carbonate chemistry in the Northern South China Sea Shelf-sea in June 2010[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 119−130. doi: 10.1016/j.dsr2.2015.02.024
    [42]
    赵军鹏, 龚文平, 王道儒. 海南岛南渡江河口的盐水入侵[J]. 海洋学报, 2013, 35(5): 14−28. doi: 10.3969/j.issn.0253-4193.2013.05.002

    Zhao Junpeng, Gong Wenping, Wang Daoru. Saline intrusion in the Nandu River Estuary, Hainan Island[J]. Haiyang Xuebao, 2013, 35(5): 14−28. doi: 10.3969/j.issn.0253-4193.2013.05.002
    [43]
    Milliman J D, Farnsworth K L. River Discharge to the Coastal Ocean: A Global Synthesis[M]. Cambridge: Cambridge University Press, 2011.
    [44]
    Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401−428. doi: 10.2475/ajs.287.5.401
    [45]
    Suchet P A, Probst J L, Ludwig W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans[J]. Global Biogeochemical Cycles, 2003, 17(2): 1038.
    [46]
    Cai Weijun, Guo Xianghui, Chen C T A, et al. A comparative overview of weathering intensity and HCO3 flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang(Pearl) and Mississippi Rivers[J]. Continental Shelf Research, 2008, 28(12): 1538−1549. doi: 10.1016/j.csr.2007.10.014
    [47]
    彭精诚, 郑栩, 吴卫华. 热带海南岛地表和地下化学风化: 对全球碳循环及海水Sr同位素演化研究的启示[J]. 高校地质学报, 2022, 28(6): 849−860.

    Peng Jingcheng, Zheng Xu, Wu Weihua. Surface and subsurface chemical weathering in tropical Hainan Island: implications for global carbon cycle and seawater Sr isotope evolution[J]. Geological Journal of China Universities, 2022, 28(6): 849−860.
    [48]
    Reddy S K K, Gupta H, Reddy D V. Dissolved inorganic carbon export by mountainous tropical rivers of the Western Ghats, India[J]. Chemical Geology, 2019, 530: 119316. doi: 10.1016/j.chemgeo.2019.119316
    [49]
    Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3−30.
    [50]
    Yao Hongming, Hu Xinping. Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary[J]. Limnology and Oceanography, 2017, 62(S1): S112−S130.
    [51]
    Liu Songlin, Liang Jiening, Jiang Zhijian, et al. Temporal and spatial variations of air-sea CO2 fluxes and their key influence factors in seagrass meadows of Hainan Island, South China Sea[J]. Science of the Total Environment, 2024, 910: 168684. doi: 10.1016/j.scitotenv.2023.168684
    [52]
    Gupta G V M, Sarma V V S S, Robin R S, et al. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon(Chilka Lake, India)[J]. Biogeochemistry, 2008, 87(3): 265−285. doi: 10.1007/s10533-008-9183-x
    [53]
    Tokoro T, Hosokawa S, Miyoshi E, et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation[J]. Global Change Biology, 2014, 20(6): 1873−1884. doi: 10.1111/gcb.12543
    [54]
    Van Dam B, Polsenaere P, Barreras-Apodaca A, et al. Global trends in air-water CO2 exchange over seagrass meadows revealed by atmospheric eddy covariance[J]. Global Biogeochemical Cycles, 2021, 35(4): e2020GB006848. doi: 10.1029/2020GB006848
    [55]
    Erbas T, Marques A, Abril G. A CO2 sink in a tropical coastal lagoon impacted by cultural eutrophication and upwelling[J]. Estuarine, Coastal and Shelf Science, 2021, 263: 107633. doi: 10.1016/j.ecss.2021.107633
    [56]
    Cotovicz Jr L C, Knoppers B A, Régis C R, et al. Eutrophication overcoming carbonate precipitation in a tropical hypersaline coastal lagoon acting as a CO2 sink(Araruama Lagoon, SE Brazil)[J]. Biogeochemistry, 2021, 156(2): 231−254. doi: 10.1007/s10533-021-00842-3
    [57]
    Maher D T, Eyre B D. Carbon budgets for three autotrophic Australian estuaries: Implications for global estimates of the coastal air‐water CO2 flux[J]. Global Biogeochemical Cycles, 2012, 26(1): GB1032.
    [58]
    Koné Y J M, Abril G, Kouadio K N, et al. Seasonal variability of carbon dioxide in the rivers and lagoons of ivory coast(West Africa)[J]. Estuaries and Coasts, 2009, 32(2): 246−260. doi: 10.1007/s12237-008-9121-0
    [59]
    Chen C T A, Huang T H, Chen Y C, et al. Air–sea exchanges of CO2 in the world’s coastal seas[J]. Biogeosciences, 2013, 10(10): 6509-6544. (查阅网上资料, 本条文献与第14条文献重复, 请确认)
    [60]
    Aguirrezabala-Cámpano T, Gonzalez-Valencia R, García-Pérez V, et al. Spatial and seasonal dynamics of the methane cycle in a tropical coastal lagoon and its tributary river[J]. Science of the Total Environment, 2022, 825: 154074. doi: 10.1016/j.scitotenv.2022.154074
    [61]
    Vallejo B, Ponce R, Ortega T, et al. Greenhouse gas dynamics in a coastal lagoon during the recovery of the macrophyte meadow(Mar Menor, SE Spain)[J]. Science of the Total Environment, 2021, 779: 146314. doi: 10.1016/j.scitotenv.2021.146314
    [62]
    Polsenaere P, Delille B, Poirier D, et al. Seasonal, diurnal, and tidal variations of dissolved inorganic carbon and pCO2 in surface waters of a temperate coastal lagoon(Arcachon, SW France)[J]. Estuaries and Coasts, 2023, 46(1): 128−148. doi: 10.1007/s12237-022-01121-6
    [63]
    Vachon D, Sadro S, Bogard M J, et al. Paired O2–CO2 measurements provide emergent insights into aquatic ecosystem function[J]. Limnology and Oceanography Letters, 2020, 5(4): 287−294. doi: 10.1002/lol2.10135
    [64]
    Broecker W S, Peng T H. Gas exchange rates between air and sea[J]. Tellus, 1974, 26(1/2): 21−35.
    [65]
    Zeebe R E, Wolf-Gladrow D. CO2 in Seawater: Equilibrium, Kinetics, Isotopes[M]. Oxford: Gulf Professional Publishing, 2001.
    [66]
    Jones D C, Ito T, Takano Y, et al. Spatial and seasonal variability of the air-sea equilibration timescale of carbon dioxide[J]. Global Biogeochemical Cycles, 2014, 28(11): 1163−1178. doi: 10.1002/2014GB004813
    [67]
    Wang Xilong, Du Jinzhou. Submarine groundwater discharge into typical tropical lagoons: a case study in eastern Hainan Island, China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4366−4382. doi: 10.1002/2016GC006502
    [68]
    邱广龙, 范航清, 李宗善, 等. 濒危海草贝克喜盐草的种群动态及土壤种子库——以广西珍珠湾为例[J]. 生态学报, 2013, 33(19): 6163−6172. doi: 10.5846/stxb201306091489

    Qiu Guanglong, Fan Hangqing, Li Zongshan, et al. Population dynamics and seed banks of the threatened seagrass Halophila beccarii in Pearl Bay, Guangxi[J]. Acta Ecologica Sinica, 2013, 33(19): 6163−6172. doi: 10.5846/stxb201306091489
    [69]
    耿晓晓. 海南岛贝克喜盐草的空间分布特性及保护价值研究[D]. 三亚: 海南热带海洋学院, 2023.

    Geng Xiaoxiao. Spatial distribution characteristics and protection value of Halophila beccarii around Hainan Island[D]. Sanya: Hainan Tropical Ocean University, 2023.
    [70]
    Delille B, Delille D, Fiala M, et al. Seasonal changes of pCO2 over a subantarctic Macrocystis kelp bed[J]. Polar Biology, 2000, 23(10): 706−716. doi: 10.1007/s003000000142
    [71]
    Setchell W A. Ruppia and its environmental factors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1924, 10(6): 286−288.
    [72]
    Menéndez M, Martı́nez M, Comı́n F A. A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon[J]. Journal of Experimental Marine Biology and Ecology, 2001, 256(1): 123−136. doi: 10.1016/S0022-0981(00)00313-0
    [73]
    Middelboe A L, Hansen P J. High pH in shallow-water macroalgal habitats[J]. Marine Ecology Progress Series, 2007, 338: 107−117. doi: 10.3354/meps338107
    [74]
    Björk M, Axelsson L, Beer S. Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast?[J]. Marine Ecology Progress Series, 2004, 284: 109−116. doi: 10.3354/meps284109
    [75]
    Su Jianzhong, Cai Weijun, Brodeur J, et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling[J]. Nature Geoscience, 2020, 13(6): 441−447. doi: 10.1038/s41561-020-0584-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article views (5) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return