Citation: | LIU Ziyi,LIU Yongchun,ZHU Ming, et al. Changes of microbial community composition in Porites lutea during health-bleaching recovery under high temperature stress[J]. Haiyang Xuebao,2025, 47(x):1–16 |
[1] |
Polidoro B, Carpenter K. Dynamics of coral reef recovery[J]. Science, 2013, 340(6128): 34−35. doi: 10.1126/science.1236833
|
[2] |
Doney S C, Ruckelshaus M, Emmett Duffy J, et al. Climate change impacts on marine ecosystems[J]. Annual Review of Marine Science, 2012, 4(1): 11−37. doi: 10.1146/annurev-marine-041911-111611
|
[3] |
Manikandan B, Ravindran J, Shrinivaasu S, et al. Community structure and coral status across reef fishing intensity gradients in Palk Bay reef, southeast coast of India[J]. Environmental Monitoring and Assessment, 2014, 186(10): 5989−6002. doi: 10.1007/s10661-014-3835-1
|
[4] |
Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
|
[5] |
Frölicher T L, Fischer E M, Gruber N. Marine heatwaves under global warming[J]. Nature, 2018, 560(7718): 360−364. doi: 10.1038/s41586-018-0383-9
|
[6] |
Chen Tianrun, Yu Kefu, Shi Qi, et al. Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event[J]. Chinese Science Bulletin, 2009, 54(12): 2107−2117. doi: 10.1007/s11434-009-0007-8
|
[7] |
Yu Kefu. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
|
[8] |
Charpy L, Casareto B E, Langlade M J, et al. Cyanobacteria in coral reef ecosystems: a review[J]. Journal of Marine Sciences, 2012, 2012(1): 259571.
|
[9] |
Tout J, Jeffries T C, Webster N S, et al. Variability in microbial community composition and function between different niches within a coral reef[J]. Microbial Ecology, 2014, 67(3): 540−552. doi: 10.1007/s00248-013-0362-5
|
[10] |
Glasl B, Webster N S, Bourne D G. Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems[J]. Marine Biology, 2017, 164(4): 91. doi: 10.1007/s00227-017-3097-x
|
[11] |
Shade A, Peter H, Allison S D, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology, 2012, 3: 417.
|
[12] |
Liu Zhuhong, Chen Chang, Gao Lei, et al. Differences in microbial communities between healthy and bleached coral Acropora solitaryensis from Xisha Islands, South China Sea[J]. Marine Biology Research, 2016, 12(10): 1101−1108. doi: 10.1080/17451000.2016.1236201
|
[13] |
周进, 晋慧, 蔡中华. 微生物在珊瑚礁生态系统中的作用与功能[J]. 应用生态学报, 2014, 25(3): 919−930.
Zhou Jin, Jin Hui, Cai Zhonghua. A review of the role and function of microbes in coral reef ecosystem[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 919−930.
|
[14] |
Ziegler M, Seneca F O, Yum L K, et al. Bacterial community dynamics are linked to patterns of coral heat tolerance[J]. Nature Communications, 2017, 8(1): 14213. doi: 10.1038/ncomms14213
|
[15] |
Qin Zhenjun, Yu Kefu, Liang Jiayuan, et al. Significant changes in microbial communities associated with reef corals in the southern South China Sea during the 2015/2016 global‐scale coral bleaching event[J]. Journal of Geophysical Research: Oceans, 2020, 125(7): e2019JC015579. doi: 10.1029/2019JC015579
|
[16] |
Xie J Y, Yeung Y H, Kwok C K, et al. Localized bleaching and quick recovery in Hong Kong's coral communities[J]. Marine Pollution Bulletin, 2020, 153: 110950. doi: 10.1016/j.marpolbul.2020.110950
|
[17] |
Bourne D, Iida Y, Uthicke S, et al. Changes in coral-associated microbial communities during a bleaching event[J]. The ISME Journal, 2008, 2(4): 350−363. doi: 10.1038/ismej.2007.112
|
[18] |
Littman R, Willis B L, Bourne D G. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef[J]. Environmental Microbiology Reports, 2011, 3(6): 651−660. doi: 10.1111/j.1758-2229.2010.00234.x
|
[19] |
Ben-Haim Y, Rosenberg E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis[J]. Marine Biology, 2002, 141(1): 47−55. doi: 10.1007/s00227-002-0797-6
|
[20] |
Oladi M, Shokri M R, Rajabi-Maham H. Application of the coral health chart to determine bleaching status of Acropora downingi in a subtropical coral reef[J]. Ocean Science Journal, 2017, 52(2): 267−275. doi: 10.1007/s12601-017-0025-4
|
[21] |
黄晖, 杨泽民, 张俊彬, 等. 柳珊瑚4种不同DNA提取方法的比较研究[J]. 海洋通报, 2007, 26(2): 100−104. doi: 10.3969/j.issn.1001-6392.2007.02.015
Huang Hui, Yang Zemin, Zhang Junbin, et al. Comparison of 4 different gorgonian DNA extraction methods[J]. Marine Science Bulletin, 2007, 26(2): 100−104. doi: 10.3969/j.issn.1001-6392.2007.02.015
|
[22] |
Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. Msystems, 2016, 1(1): 10. 1128.
|
[23] |
Li Dinghua, Liu Chiman, Luo Ruibang, et al. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10): 1674−1676. doi: 10.1093/bioinformatics/btv033
|
[24] |
Fu Limin, Niu Beifang, Zhu Zhengwei, et al. CD-HIT: accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23): 3150−3152. doi: 10.1093/bioinformatics/bts565
|
[25] |
Li Ruiqiang, Yu Chang, Li Yingrui, et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics, 2009, 25(15): 1966−1967. doi: 10.1093/bioinformatics/btp336
|
[26] |
Wyatt A S J, Leichter J J, Toth L T, et al. Heat accumulation on coral reefs mitigated by internal waves[J]. Nature Geoscience, 2019, 13(1): 28−34.
|
[27] |
Gardner S G, Camp E F, Smith D J, et al. Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave[J]. Ecology and Evolution, 2019, 9(3): 938−956. doi: 10.1002/ece3.4662
|
[28] |
Ziegler M, Grupstra C G B, Barreto M M, et al. Coral bacterial community structure responds to environmental change in a host-specific manner[J]. Nature Communications, 2019, 10(1): 3092. doi: 10.1038/s41467-019-10969-5
|
[29] |
Glasl B, Herndl G J, Frade P R. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance[J]. The ISME Journal, 2016, 10(9): 2280−2292. doi: 10.1038/ismej.2016.9
|
[30] |
Suggett D J, Smith D J. Coral bleaching patterns are the outcome of complex biological and environmental networking[J]. Global Change Biology, 2020, 26(1): 68−79. doi: 10.1111/gcb.14871
|
[31] |
林姿君, 蔡中华, 林光辉, 等. 健康与白化状态下珊瑚共生菌的群落组成与功能差异[J]. 海洋学报, 2018, 40(2): 104−116.
Lin Zijun, Cai Zhonghua, Lin Guanghui, et al. Community composition and functional differences of symbiotic bacteria in healthy and blenching coral[J]. Haiyang Xuebao, 2018, 40(2): 104−116.
|
[32] |
Zaneveld J R, McMinds R, Vega Thurber R. Stress and stability: applying the Anna Karenina principle to animal microbiomes[J]. Nature Microbiology, 2017, 2(9): 17121. doi: 10.1038/nmicrobiol.2017.121
|
[33] |
徐帅良. 滨珊瑚共附生细菌多样性及其纯培养研究[D]. 南宁: 广西大学, 2020.
Xu Shuailiang. Diversity of Porites. associated bacteria and its pure culture study[D]. Nanning: Guangxi University, 2020.
|
[34] |
Van De Water J A J M, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives[J]. Microbiome, 2018, 6(1): 64. doi: 10.1186/s40168-018-0431-6
|
[35] |
Chapelle E, Mendes R, Bakker P A H M, et al. Fungal invasion of the rhizosphere microbiome[J]. The ISME Journal, 2016, 10(1): 265−268. doi: 10.1038/ismej.2015.82
|
[36] |
Sharp K H, Distel D, Paul V J. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides[J]. The ISME Journal, 2012, 6(4): 790−801. doi: 10.1038/ismej.2011.144
|
[37] |
Kusdianto H, Kullapanich C, Palasuk M, et al. Microbiomes of healthy and bleached corals during a 2016 thermal bleaching event in the upper Gulf of Thailand[J]. Frontiers in Marine Science, 2021, 8: 643962. doi: 10.3389/fmars.2021.643962
|
[38] |
Du Jikun, Xiao Kai, Huang Yali, et al. Seasonal and spatial diversity of microbial communities in marine sediments of the South China Sea[J]. Antonie Van Leeuwenhoek, 2011, 100(3): 317−331. doi: 10.1007/s10482-011-9587-9
|
[39] |
Alexandre A, Laranjo M, Young J P W, et al. DnaJ is a useful phylogenetic marker for alphaproteobacteria[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(12): 2839−2849. doi: 10.1099/ijs.0.2008/001636-0
|
[40] |
Brettar I, Christen R, Höfle M G. Rheinheimera perlucida sp. nov. , a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(9): 2177-2183.
|
[41] |
Sun Fulin, Wang Youshao, Wu Meilin, et al. Spatial and vertical distribution of bacteria in the Pearl River estuary sediment[J]. African Journal of Biotechnology, 2012, 11(9): 2256−2266.
|
[42] |
Miura N, Motone K, Takagi T, et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus[J]. Marine Biotechnology, 2019, 21(1): 1−8. doi: 10.1007/s10126-018-9853-1
|
[43] |
Kitamura R, Miura N, Ito M, et al. Specific detection of coral-associated Ruegeria, a potential probiotic bacterium, in corals and subtropical seawater[J]. Marine Biotechnology, 2021, 23(4): 576−589. doi: 10.1007/s10126-021-10047-2
|
[44] |
Jones P R, Cottrell M T, Kirchman D L, et al. Bacterial community structure of biofilms on artificial surfaces in an estuary[J]. Microbial Ecology, 2007, 53(1): 153−162. doi: 10.1007/s00248-006-9154-5
|
[45] |
Cárdenas A, Rodriguez-R L M, Pizarro V, et al. Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease[J]. The ISME Journal, 2012, 6(3): 502−512. doi: 10.1038/ismej.2011.123
|
[46] |
Yellowlees D, Rees T A V, Leggat W. Metabolic interactions between algal symbionts and invertebrate hosts[J]. Plant, Cell & Environment, 2008, 31(5): 679-694.
|
[47] |
Hördt A, López M G, Meier-Kolthoff J P, et al. Analysis of 1, 000+ type-strain genomes substantially improves taxonomic classification of Alphaproteobacteria[J]. Frontiers in Microbiology, 2020, 11: 468. doi: 10.3389/fmicb.2020.00468
|
[48] |
McDevitt-Irwin J M, Baum J K, Garren M, et al. Responses of coral-associated bacterial communities to local and global stressors[J]. Frontiers in Marine Science, 2017, 4: 262. doi: 10.3389/fmars.2017.00262
|
[49] |
O'Brien P A, Morrow K M, Willis B L, et al. Implications of ocean acidification for marine microorganisms from the free-living to the host-associated[J]. Frontiers in Marine Science, 2016, 3: 47.
|
[50] |
Hayashi K, Senuma W, Kai K, et al. Major exopolysaccharide, EPS I, is associated with the feedback loop in the quorum sensing of Ralstonia solanacearum strain OE1-1[J]. Molecular Plant Pathology, 2019, 20(12): 1740−1747. doi: 10.1111/mpp.12870
|
[51] |
Ainsworth T D, Krause L, Bridge T, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts[J]. The ISME Journal, 2015, 9(10): 2261−2274. doi: 10.1038/ismej.2015.39
|
[52] |
Zhou Jin, Lin Zijun, Cai Zhonghua, et al. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching[J]. Environmental Microbiology, 2020, 22(5): 1944−1962. doi: 10.1111/1462-2920.15009
|
[53] |
Teplitski M, Warriner K, Bartz J, et al. Untangling metabolic and communication networks: interactions of enterics with phytobacteria and their implications in produce safety[J]. Trends in Microbiology, 2011, 19(3): 121−127. doi: 10.1016/j.tim.2010.11.007
|