Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Liu Yi-fan,XIA Qiong,CHEN Ze-kai. Validation of Lagrangian Fluid Particle Trajectories Based on Altimeter Data[J]. Haiyang Xuebao,2025, 47(x):1–9
Citation: Liu Yi-fan,XIA Qiong,CHEN Ze-kai. Validation of Lagrangian Fluid Particle Trajectories Based on Altimeter Data[J]. Haiyang Xuebao,2025, 47(x):1–9

Validation of Lagrangian Fluid Particle Trajectories Based on Altimeter Data

  • Received Date: 2024-12-04
  • Rev Recd Date: 2025-04-03
  • Available Online: 2025-05-22
  • Satellite altimetry data provides large-scale, long-term stable ocean flow field information, but its low resolution may affect the accuracy of Lagrangian fluid particle trajectories calculated from it. In this study, a comparative approach using buoy trajectories and chlorophyll structure evolution was employed to systematically assess the reliability of Lagrangian fluid particle trajectories derived from altimetry data.The results indicate that this method effectively characterizes mesoscale oceanic motions, with fluid particle trajectories closely matching the overall trends of actual buoy trajectories, particularly demonstrating strong tracking capability in rotational motion patterns. However, the sensitivity of these trajectories to mesoscale and sub-mesoscale motions is relatively low, with slower movement speeds making it difficult to accurately capture short-period perturbations.Further analysis reveals that fluid particle trajectories can reliably track the evolution of chlorophyll structures over a 30-day period, suggesting their applicability in mesoscale oceanic studies. This research provides a scientific basis for the application of altimetry data in Lagrangian analysis and offers valuable insights for the study of ocean circulation and ecological processes.
  • loading
  • [1]
    Haller G, Hadjighasem A, Farazmand M, et al. Defining coherent vortices objectively from the vorticity[J]. Journal of Fluid Mechanics, 2016, 795: 136−173. doi: 10.1017/jfm.2016.151
    [2]
    Xia Qiong, Li Gaocong, Dong Changming. Global oceanic mass transport by coherent eddies[J]. Journal of Physical Oceanography, 2022, 52(6): 1111−1132. doi: 10.1175/JPO-D-21-0103.1
    [3]
    Yuan Quanmu, Hu Jianyu. Spatiotemporal characteristics and volume transport of lagrangian eddies in the Northwest Pacific[J]. Remote Sensing, 2023, 15(17): 4355. doi: 10.3390/rs15174355
    [4]
    Ghosh A, Suara K, Soomere T, et al. Using Lagrangian coherent structures to investigate upwelling and physical process in the Gladstone coastal region[J]. Journal of Marine Systems, 2022, 230: 103731. doi: 10.1016/j.jmarsys.2022.103731
    [5]
    王同宇, 张书文, 马永贵, 等. 黑潮延伸区气旋式涡旋浮游植物繁殖个例[J]. 广东海洋大学学报, 2019, 39(2): 94−103.

    Wang Tongyu, Zhang Shuwen, Ma Yonggui, et al. A case study of cyclonic eddy phytoplankton bloom in the Kuroshio extension[J]. Journal of Guangdong Ocean University, 2019, 39(2): 94−103.
    [6]
    夏琼, 陈泽楷, 李高聪, 等. 基于多源数据的西北印度洋涡旋时空分布及大气响应[J]. 广东海洋大学学报, 2023, 43(1): 60−67.

    Xia Qiong, Chen Zekai, Li Gaocong, et al. Spatial and temporal distribution of eddies and their atmospheric responses in the Northwest Indian Ocean based on multiple datasets[J]. Journal of Guangdong Ocean University, 43(1): 60−67.
    [7]
    夏琼, 陈泽楷, 李高聪, 等. 气候变暖下全球大洋大、中尺度过程变化[J]. 广东海洋大学学报, 2023, 43(2): 60−66. doi: 10.3969/j.issn.1673-9159.2023.02.008

    Xia Qiong, Chen Zekai, Li Gaocong, et al. Changes of the global oceanic large-scale and mesoscale processes under global warming[J]. Journal of Guangdong Ocean University, 2023, 43(2): 60−66. doi: 10.3969/j.issn.1673-9159.2023.02.008
    [8]
    Olcay A B, Pottebaum T S, Krueger P S. Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2010, 20(1): 017506. doi: 10.1063/1.3276062
    [9]
    Harrison C S, Glatzmaier G A. Lagrangian coherent structures in the California Current System – sensitivities and limitations[J]. Geophysical & Astrophysical Fluid Dynamics, 2012, 106(1): 22−44.
    [10]
    Shadden S C, Lekien F, Paduan J D, et al. The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(3/5): 161−172.
    [11]
    Hood R R, Beckley L E, Wiggert J D. Biogeochemical and ecological impacts of boundary currents in the Indian Ocean[J]. Progress in Oceanography, 2017, 156: 290−325. doi: 10.1016/j.pocean.2017.04.011
    [12]
    Lakshmi R S, Chatterjee A, Prakash S, et al. Biophysical interactions in driving the summer monsoon chlorophyll bloom off the Somalia coast[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015549. doi: 10.1029/2019JC015549
    [13]
    Abraham E R. The generation of plankton patchiness by turbulent stirring[J]. Nature, 1998, 391(6667): 577−580. doi: 10.1038/35361
    [14]
    Pearce A F, Griffiths R W. The mesoscale structure of the Leeuwin Current: a comparison of laboratory models and satellite imagery[J]. Journal of Geophysical Research: Oceans, 1991, 96(C9): 16739−16757. doi: 10.1029/91JC01712
    [15]
    Yang Xiao, Xu Guangjun, Liu Yu, et al. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the Bay of Bengal[J]. Remote Sensing, 2020, 12(21): 3485. doi: 10.3390/rs12213485
    [16]
    Xu Guangjun, Dong Changming, Liu Yu, et al. Chlorophyll rings around ocean eddies in the North Pacific[J]. Scientific Reports, 2019, 9(1): 2056. doi: 10.1038/s41598-018-38457-8
    [17]
    Nian Rui, Yuan Minghan, Zhang Zhengguang, et al. Different types of surface chlorophyll patterns of oceanic mesoscale eddies identified by AI framework[J]. Journal of Geophysical Research: Oceans, 2024, 129(9): e2024JC021176. doi: 10.1029/2024JC021176
    [18]
    刘婷甄, 郑少军, 严厉. 南大洋中尺度涡活动的季节变化[J]. 广东海洋大学学报, 2023, 43(2): 67−76. doi: 10.3969/j.issn.1673-9159.2023.02.009

    Liu Tingzhen, Zheng Shaojun, Yan Li. Seasonal variation of mesoscale eddy activity in the Southern Ocean[J]. Journal of Guangdong Ocean University, 2023, 43(2): 67−76. doi: 10.3969/j.issn.1673-9159.2023.02.009
    [19]
    Zhang Zhengguang, Qiu Bo. Surface chlorophyll enhancement in mesoscale eddies by submesoscale spiral bands[J]. Geophysical Research Letters, 2020, 47(14): e2020GL088820. doi: 10.1029/2020GL088820
    [20]
    Xia Qiong, Dong Changming, He Yijun, et al. Lagrangian study of several long-lived Agulhas rings[J]. Journal of Physical Oceanography, 2022, 52(6): 1049−1072. doi: 10.1175/JPO-D-21-0079.1
    [21]
    Zheng Yuhang, Wu Wei, Wang Minyang, et al. Different trajectory patterns of ocean surface drifters modulated by near-inertial oscillations[J]. Environmental Research Letters, 2024, 19(10): 104060. doi: 10.1088/1748-9326/ad7745
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (34) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return