Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Song Jinming,Yuan Huamao,Li Xuegang, et al. Strength and control factors of carbon source/sinks in the China margin seas[J]. Haiyang Xuebao,2025, 47(x):1–14
Citation: Song Jinming,Yuan Huamao,Li Xuegang, et al. Strength and control factors of carbon source/sinks in the China margin seas[J]. Haiyang Xuebao,2025, 47(x):1–14

Strength and control factors of carbon source/sinks in the China margin seas

  • Received Date: 2024-12-27
  • Rev Recd Date: 2025-03-28
  • Available Online: 2025-04-24
  • Research based on observation and machine learning shows that the average annual carbon sink intensity of the China marginal seas (Bohai Sea, Yellow Sea, East China Sea and South China Sea) is −10.2±4.4 TgC/a. The Yellow Sea, the East China Sea and the northern region of the South China Sea absorb atmospheric CO2, while the Bohai Sea, the southern South China Sea and the Yangtze River Estuary release CO2 into the atmosphere. The East China Sea carbon sinks are the strongest, with an average flux of −10.5±4.5 TgC/a, and the Yellow Sea carbon sinks are relatively small, −2.1±0.9 TgC/a. The smallest carbon source appeared in the Bohai Sea is +0.3±0.1 TgC/a, while the largest carbon source intensity appeared in the South China Sea is +2.0±0.9 TgC/a. According to seasonal change, the carbon sink intensity in winter is the highest in the China margin seas, with −45.7±19.7 TgC/a, and weaker in spring, at −16.9±7.3 TgC/a. In summer and autumn, China's marginal seas as a whole are carbon sources, with an average of +11.9±5.1 TgC/a and +9.9±4.3 TgC/a respectively. The average uncertainty of carbon source sink strength in China marginal seas is ±43.0% (±4.4 TgC a−1) in the estimation results of constructing lattiness data based on observation data and machine learning, which is 47.5% of the reduced uncertainty less than 90.5% of the average uncertainty by only regional observation data. The difference of PCO2 at the sea-air interface and the difference in the CO2 exchange rate caused by wind speed are the key controlling factors of carbon source/sink in the China marginal seas. In fact, they are controlled by the basic factors and processes such as hydrodynamics, land-based source input, plankton communities and ocean-shelf transportation.
  • loading
  • [1]
    宋金明, 曲宝晓, 李学刚, 等. 海洋碳汇观测与评估的现状与思考[J]. 海洋科学进展, 2023, 41(4): 577−592. doi: 10.12362/j.issn.1671-6647.20230210001

    Song Jinming, Qu Baoxiao, Li Xuegang, et al. Estimate of ocean carbon sink: current status and reflections[J]. Advances in Marine Science, 2023, 41(4): 577−592. doi: 10.12362/j.issn.1671-6647.20230210001
    [2]
    宋金明, 李学刚, 袁华茂, 等. 中国近海生物固碳强度与潜力[J]. 生态学报, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013

    Song Jinming, Li Xuegang, Yuan Huamao, et al. Carbon fixed by phytoplankton and cultured algae in China coastal seas[J]. Acta Ecologica Sinica, 2008, 28(2): 551−558. doi: 10.3321/j.issn:1000-0933.2008.02.013
    [3]
    Song Jinming. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M]. Berlin, Heidelberg: Springer, 2010: 1−662.
    [4]
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373−7382. doi: 10.1029/92JC00188
    [5]
    Weiss R F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas[J]. Marine Chemistry, 1974, 2(3): 203−215. doi: 10.1016/0304-4203(74)90015-2
    [6]
    钟国荣, 李学刚, 曲宝晓, 等. 基于广义回归神经网络的全球表层海水1°×1°二氧化碳分压数据推演[J]. 海洋学报, 2020, 42(10): 70−79.

    Zhong Guorong, Li Xuegang, Qu Baoxiao, et al. A general regression neural network approach to reconstruct global 1°×1° resolution sea surface pCO2[J]. Haiyang Xuebao, 2020, 42(10): 70−79.
    [7]
    Landschützer P, Gruber N, Bakker D C E, et al. Recent variability of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2014, 28(9): 927−949. doi: 10.1002/2014GB004853
    [8]
    Chen Shuangling, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
    [9]
    Gregor L, Gruber N. OceanSODA-ETHZ: a global gridded data set of the surface ocean carbonate system for seasonal to decadal studies of ocean acidification[J]. Earth System Science Data, 2021, 13(2): 777−808. doi: 10.5194/essd-13-777-2021
    [10]
    Iida Y, Takatani Y, Kojima A, et al. Global trends of ocean CO2 sink and ocean acidification: an observation-based reconstruction of surface ocean inorganic carbon variables[J]. Journal of Oceanography, 2021, 77(2): 323−358. doi: 10.1007/s10872-020-00571-5
    [11]
    Zhong Guorong, Li Xuegang, Song Jinming, et al. Reconstruction of global surface ocean pCO2 using region-specific predictors based on a stepwise FFNN regression algorithm[J]. Biogeosciences, 2022, 19(3): 845−859. doi: 10.5194/bg-19-845-2022
    [12]
    Wang Zhixuan, Wang Guizhi, Guo Xianghui, et al. Spatial reconstruction of long-term (2003-2020) sea surface pCO2 in the South China Sea using a machine-learning-based regression method aided by empirical orthogonal function analysis[J]. Earth System Science Data, 2023, 15(4): 1711−1731. doi: 10.5194/essd-15-1711-2023
    [13]
    Zhong Guorong, Li Xuegang, Song Jinming, et al. The Southern Ocean carbon sink has been overestimated in the past three decades[J]. Communications Earth & Environment, 2024, 5(1): 398.
    [14]
    Landschützer P, Laruelle G G, Roobaert A, et al. A uniform pCO2 climatology combining open and coastal oceans[J]. Earth System Science Data, 2020, 12(4): 2537−2553. doi: 10.5194/essd-12-2537-2020
    [15]
    Watson A J, Schuster U, Shutler J D, et al. Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory[J]. Nature Communications, 2020, 11(1): 4422. doi: 10.1038/s41467-020-18203-3
    [16]
    Dickson A G, Sabine C L, Christian J R. Determination of p(CO2) in air that is in equilibrium with a discrete sample of sea water[M]//Dickson A G, Sabine C L, Christian J R. Guide to Best Practices for Ocean CO2 Measurements. Sidney: North Pacific Marine Science Organization, 2007: 7−8.
    [17]
    Lan X, Tans P, Thoning K, et al. NOAA greenhouse gas marine boundary layer reference-CO2 data sets[DB/OL]. Boulder: NOAA GML, (2023). https://doi.org/10.15138/DVNP-F961. (查阅网上资料,未找到本条文献作者、引用日期信息,请确认)
    [18]
    Woolf D K, Land P E, Shutler J D, et al. On the calculation of air-sea fluxes of CO2 in the presence of temperature and salinity gradients[J]. Journal of Geophysical Research: Oceans, 2016, 121(2): 1229−1248. doi: 10.1002/2015JC011427
    [19]
    Wanninkhof R. Relationship between wind speed and gas exchange over the ocean[J]. Journal of Geophysical Research: Oceans, 1992, 97(C5): 7373−7382. (查阅网上资料, 本条文献与第4条文献重复, 请确认)
    [20]
    Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999−2049. doi: 10.1002/qj.3803
    [21]
    Sweeney C, Gloor E, Jacobson A R, et al. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements[J]. Global Biogeochemical Cycles, 2007, 21(2): GB2015.
    [22]
    Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
    [23]
    Ho D T, Wanninkhof R, Schlosser P, et al. Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment[J]. Journal of Geophysical Research: Oceans, 2011, 116(C4): C00F04.
    [24]
    Woolf D K, Shutler J D, Goddijn-Murphy L, et al. Key uncertainties in the recent air‐sea flux of CO2[J]. Global Biogeochemical Cycles, 2019, 33(12): 1548−1563. doi: 10.1029/2018GB006041
    [25]
    Dai Minhan, Su Jianzhong, Zhao Yangyang, et al. Carbon fluxes in the coastal ocean: synthesis, boundary processes, and future trends[J]. Annual Review of Earth and Planetary Sciences, 2022, 50: 593−626. doi: 10.1146/annurev-earth-032320-090746
    [26]
    Zhang Longjun, Xue Liang, Song Meiqin, et al. Distribution of the surface partial pressure of CO2 in the southern Yellow Sea and its controls[J]. Continental Shelf Research, 2010, 30(3/4): 293−304.
    [27]
    Qu Baoxiao, Song Jinming, Yuan Huamao, et al. Air-sea CO2 exchange process in the southern Yellow Sea in April of 2011, and June, July, October of 2012[J]. Continental Shelf Research, 2014, 80: 8−19. doi: 10.1016/j.csr.2014.02.001
    [28]
    Qu Baoxiao, Song Jinming, Yuan Huamao, et al. Summer carbonate chemistry dynamics in the Southern Yellow Sea and the East China Sea: regional variations and controls[J]. Continental Shelf Research, 2015, 111: 250−261. doi: 10.1016/j.csr.2015.08.017
    [29]
    Xu Xuemei, Zang Kunpeng, Zhao Huade, et al. Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: controlling processes[J]. Journal of Marine Systems, 2016, 159: 89−99. doi: 10.1016/j.jmarsys.2016.03.009
    [30]
    Tsunogai S, Watanabe S, Nakamura J, et al. A preliminary study of carbon system in the East China Sea[J]. Journal of Oceanography, 1997, 53(1): 9−17. doi: 10.1007/BF02700744
    [31]
    Chou Wenchen, Gong G C, Tseng C M, et al. The carbonate system in the East China Sea in winter[J]. Marine Chemistry, 2011, 123(1/4): 44−55.
    [32]
    曲宝晓, 宋金明, 袁华茂, 等. 东海海-气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783

    Qu Baoxiao, Song Jinming, Yuan Huamao, et al. Advances of seasonal variations and controlling factors of the air-sea CO2 flux in the East China Sea[J]. Advances in Earth Science, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783
    [33]
    Guo X H, Zhai W D, Dai M H, et al. Air–sea CO2 fluxes in the East China Sea based on multiple-year underway observations[J]. Biogeosciences, 2015, 12(18): 5495−5514. doi: 10.5194/bg-12-5495-2015
    [34]
    Zhai Weidong, Dai Minhan, Cai Weijun, et al. The partial pressure of carbon dioxide and air–sea fluxes in the northern South China Sea in spring, summer and autumn[J]. Marine Chemistry, 2005, 96(1/2): 87−97.
    [35]
    Zhu Yu, Shang Shaoling, Zhai Weidong, et al. Satellite-derived surface water pCO2 and air–sea CO2 fluxes in the northern South China Sea in summer[J]. Progress in Natural Science, 2009, 19(6): 775−779. doi: 10.1016/j.pnsc.2008.09.004
    [36]
    Hung J J, Wang Y J, Tseng C M, et al. Controlling mechanisms and cross linkages of ecosystem metabolism and atmospheric CO2 flux in the northern South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2020, 157: 103205. doi: 10.1016/j.dsr.2019.103205
    [37]
    邢建伟, 宋金明. 大气溶解有机碳湿沉降及其在海洋碳中和中的作用[J]. 中国环境科学, 2025, 45(2): 606−618. doi: 10.3969/j.issn.1000-6923.2025.02.002

    Xing Jianwei, Song Jinming. Wet deposition of atmospheric dissolved organic carbon and its role in marine carbon neutralization[J]. China Environmental Science, 2025, 45(2): 606−618. doi: 10.3969/j.issn.1000-6923.2025.02.002
    [38]
    卢汐, 宋金明, 袁华茂, 等. 黑潮与毗邻陆架海域的碳交换[J]. 地球科学进展, 2015, 30(2): 214−225.

    Lu Xi, Song Jinming, Yuan Huamao, et al. Carbon distribution and exchange of Kuroshio and adjacent China sea shelf: a review[J]. Advances in Earth Science, 2015, 30(2): 214−225.
    [39]
    卢汐, 宋金明, 袁华茂, 等. 黑潮主流径海域海水中的无机碳及其对东海陆架区的影响[J]. 海洋与湖沼, 2016, 47(1): 16−28.

    Lu Xi, Song Jinming, Yuan Huamao, et al. Distribution of inorganic carbon parameters in Kuroshio and its impact on adjacent East China Sea shelf[J]. Oceanologia et Limnologia Sinica, 2016, 47(1): 16−28.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article views (5) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return