Citation: | Sui Titi,Jiang Qihe,Wang Guangsheng, et al. Summary for “Liquefaction stabilization of the seabed around a sloping breakwater under bimodal spectral waves”[J]. Haiyang Xuebao,2025, 47(x):1–10 |
[1] |
朱建, 窦培林, 陈刚, 等. 西非海域涌浪对多点系泊FPSO水动力性能影响分析[J]. 中国造船, 2014, 55(3): 117−124 doi: 10.3969/j.issn.1000-4882.2014.03.013
Zhu Jian, Dou Peilin, Chen Gang, et al. Influence of swell on hydrodynamic performances of FPSO in West Africa waters[J]. Shipbuilding of China, 2014, 55(3): 117−124. doi: 10.3969/j.issn.1000-4882.2014.03.013
|
[2] |
Nerzic R, Frelin C, Prevosto M, et al. Joint distributions of wind/waves/current in West Africa and derivation of multivariate extreme I-FORM contours[C]//The Seventeenth International Offshore and Polar Engineering Conference. Lisbon: ISOPE, 2007: ISOPE-I-07-298.
|
[3] |
Orimoloye S, Horrillo-Caraballo J, Karunarathna H, et al. Wave overtopping of smooth impermeable seawalls under unidirectional bimodal sea conditions[J]. Coastal Engineering, 2021, 165: 103792. doi: 10.1016/j.coastaleng.2020.103792
|
[4] |
王野, 温鸿杰, 余锡平. 波浪作用下抛石基床上沉箱稳定性的SPH模拟[J]. 科学通报, 2021, 66(36): 4700−4708 doi: 10.1360/TB-2021-0914
Wang Ye, Wen Hongjie, Yu Xiping. SPH modeling of caisson stability on rubble-mound foundation under wave action[J]. Chinese Science Bulletin, 2021, 66(36): 4700−4708. doi: 10.1360/TB-2021-0914
|
[5] |
Guo L, Qu K, Wang X, et al. Numerical study on performance of submerged permeable breakwater under impacts of multi-directional focused wave groups[J]. Ocean Engineering, 2024, 302: 117665. doi: 10.1016/j.oceaneng.2024.117665
|
[6] |
Zhao Enjin, Dong Youkou, Tang Yuezhao. Performance of submerged semi-circular breakwater under solitary wave in consideration of porous media[J]. Ocean Engineering, 2021, 223: 108573. doi: 10.1016/j.oceaneng.2021.108573
|
[7] |
Chen Mili, Yan Shichang, Yang Yue, et al. Experimental study on wave height distribution outside harbor for composite rubble mound breakwaters[J]. China Harbour Engineering, 2022, 42(1): 45−47. (查阅网上资料, 本条文献为中文文献, 请确认)
|
[8] |
Putnam J A. Loss of wave energy due to percolation in a permeable sea bottom[J]. Eos, Transactions American Geophysical Union, 1949, 30(3): 349−356. doi: 10.1029/TR030i003p00349
|
[9] |
Yamamoto T, Koning H L, Sellmeijer H, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao, 1978, 87: 193−206. (查阅网上资料, 未找到本条文献信息, 请确认)
|
[10] |
Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed[J]. Géotechnique, 1978, 28(4): 377−393.
|
[11] |
Zienkiewicz O C, Chang C T, Bettess P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils[J]. Géotechnique, 1980, 30(4): 385−395.
|
[12] |
Hsu J R C, Jeng D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785−807. doi: 10.1002/nag.1610181104
|
[13] |
Tsai C P, Lee T L. Standing wave induced pore pressures in a porous seabed[J]. Ocean Engineering, 1995, 22(6): 505−517. doi: 10.1016/0029-8018(95)00003-4
|
[14] |
王岳, 刘春, 刘晓磊, 等. 波浪作用下海床孔压累积过程离散元数值模拟[J]. 海洋学报, 2021, 43(11): 88−95
Wang Yue, Liu Chun, Liu Xiaolei, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao, 2021, 43(11): 88−95.
|
[15] |
倪云林, 龚倩, 沈梦佳. 渗透海床上矩形Bragg防波堤对波浪反射的研究[J]. 海洋学报, 2022, 44(9): 124−131 doi: 10.12284/j.issn.0253-4193.2022.9.hyxb202209011
Ni Yunlin, Gong Qian, Shen Mengjia. Study of wave reflection by the Bragg breakwater with rectangular bars on the permeable seabed[J]. Haiyang Xuebao, 2022, 44(9): 124−131. doi: 10.12284/j.issn.0253-4193.2022.9.hyxb202209011
|
[16] |
Ye Jianhong, Shan Jipeng, Zhou Haoran, et al. Numerical modelling of the wave interaction with revetment breakwater built on reclaimed coral reef islands in the South China Sea-experimental verification[J]. Ocean Engineering, 2021, 235: 109325. doi: 10.1016/j.oceaneng.2021.109325
|
[17] |
Li Zhengxu, Jeng D S. Dynamic soil response around two-layered detached breakwaters: three-dimensional OpenFOAM model[J]. Ocean Engineering, 2023, 268: 113582. doi: 10.1016/j.oceaneng.2022.113582
|
[18] |
Duan Lunliang, Wang Duoyin. Novel three-dimensional numerical model for residual seabed response to natural loadings near a single pile[J]. Applied Ocean Research, 2020, 94: 102004. doi: 10.1016/j.apor.2019.102004
|
[19] |
Ochi M K, Hubble E N. Six-parameter wave spectra[C]//Coastal Engineering Proceedings. 1976: 301−328. (查阅网上资料, 未找到本条文献出版信息, 请确认)
|
[20] |
Soares C G. Representation of double-peaked sea wave spectra[J]. Ocean Engineering, 1984, 11(2): 185−207. doi: 10.1016/0029-8018(84)90019-2
|
[21] |
Jonah F E. Managing coastal erosion hotspots along the Elmina, Cape Coast and Moree area of Ghana[J]. Ocean & Coastal Management, 2015, 109: 9−16.
|
[22] |
Luth H R, Klopman G, Kitou N. Kinematics of waves breaking partially on an offshore bar, LVD measurements for waves without a net onshore current[R]. Delft, the Netherlands: Delft Hydraulics, 1994.
|
[23] |
卢海斌. 波浪作用下沙质海床孔隙水压力的研究[D]. 长沙: 长沙理工大学, 2005
Lu Haibin. The research on pore water pressure response to waves in sandy seabed[D]. Changsha: Changsha University of Science & Technology, 2005.
|
[24] |
Kim I C, Kaihatu J M. A modified frequency distribution function of wave-breaking-induced energy dissipation[J]. Journal of Geophysical Research: Oceans, 2022, 127(12): e2022JC018792. doi: 10.1029/2022JC018792
|
[25] |
Zen K, Yamazaki H. Oscillatory pore pressure and liquefaction in seabed induced by ocean waves[J]. Soils and Foundations, 1990, 30(4): 147−161. doi: 10.3208/sandf1972.30.4_147
|
[26] |
Jeng D S. Wave-induced seabed instability in front of a breakwater[J]. Ocean Engineering, 1997, 24(10): 887−917. doi: 10.1016/S0029-8018(96)00046-7
|