Citation: | Lai Xiaojuan, Yan Xiaojun, Yang Rui, Luo Qijun, Chen Haimin. Digital gene expression profiling analysis of Pyropia haitanensis under high temperature stress[J]. Haiyang Xuebao, 2014, 36(6): 104-111. |
张学成,秦松,马家海,等. 海藻遗传学[M]. 北京:中国农业出版社,2005.
|
杨锐,张晓龙,徐丽宁,等. 坛紫菜耐高温胁迫机理之初步研究//中国海洋湖沼学会藻类学分会第七届会员大会暨第十四次学术讨论会论文摘要集,2007.
|
Chen S,Jiang J,Li HY,et al. The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE[J]. Gene,2012,504(2):203-212.
|
Choi S,Hwang M S,Im S,et al. Transcriptome sequencing and comparative analysis of the gametophyte thalli of Pyropia tenera under normal and high temperature conditions[J]. J Appl Phycol,2013,25(4):1237-1264.
|
杨惠. 条斑紫菜功能基因组及重复序列特征研究. 青岛:中国海洋大学,2011.
|
Mortazavi A,Williams B A,McCue K,et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods,2008,5(7): 621-628.
|
Li R,Yu C,Li Y,et al. SOAP2: an improved ultrafast tool for short read alignment[J]. Bioinformatics,2009,25 (15): 1966-1967.
|
Audic S,Claverie J M. The significance of digital gene expression profiles[J]. Genome Res,1997,7(10): 986-995.
|
Kanehisa M,Araki M,Goto S,et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res, 2008,36: 480-484.
|
朱竹君,骆其君,严小军,等. 琼胶寡糖聚合度对坛紫菜抗性诱导的影响[J].海洋学报,2012,34(6):205-209.
|
Bray E A,Bailey-Serres J,Weretilnyk E. Responses to abiotic stresses//Buchanan B,Gruissem W,Jones R. Biochemistry and molecular biology of plants. American Society of Plant Biologists,Rockville,2000: 1158-1203.
|
Wang W,Vinocur B,Shoseyov O,et al. Role of plant heat-shock proteins and molecular chaperons in the abiotic stress response[J]. Trends Plant Sci,2004,9(5): 244-252.
|
Allakhverdiev S I,Kreslavski V D,Klimov V V,et al. Heat stress: an overview of molecular responses in photosynthesis[J]. Photosynth Res,2008,98(1-3): 541-550.
|
McKersie B D,Leshem Y Y. Stress and stress coping in cultivated plants[M]. Dordrecht: Kluwer Academic Publishers,1994:181-193.
|
Daugaard M,Rohde M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions[J]. FEBS Lett,2007,581(19): 3702-3710.
|
Kim E,Park H S,Jung Y,et al. Identification of the high-temperature response genes from Porphyra seriata(rhodophyta) expression sequence tags and enhancement of heat tolerance of Chlamydomonas(chlorophyta) by expression of the porphyra HTR2 gene[J]. J Phycol,2011,47(4): 821-828.
|
Kim Y K,Jang K. Continuous heat shock enhances translational initiation directed by internal ribosomal entry site[J]. Biochem Biophys Res Comun,2002,297(2): 224-231.
|
Warner J R,McIntosh K B. How common are extraribosomal functions of ribosomal proteins[J]. Mol Cell,2009,34(1): 3-11.
|
Fu J,MomciloviéI,Clemente T E,et al. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress[J]. Plant Mol Biol,2008,68(3):277-288.
|
Urano K,Kurihara Y,Seki M,et al. "Omics" analyses of regulatory networks in plant abiotic stress responses[J]. Curr Opin Plant Biol,2010,13(2): 132-138.
|
Mittler R,Flinka A,Goloubinoff P. How do plant feel the heat?[J]. Trends Biochem Sci,2012,37(3): 118-125.
|
Qin D,Wu H,Peng H,et al. Heat stress-responsive transcriptome analysis in heat susceptible and tolerant wheat (Triticum aestivum L.) by using Wheat Genome Array[J]. BMC Genomic,2008,9: 432.
|