Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.
Citation: Yao Peng, Guo Zhigang, Yu Zhigang. Remineralization of sedimentary organic carbon in river dominated ocean margins[J]. Haiyang Xuebao, 2014, 36(2): 23-32.

Remineralization of sedimentary organic carbon in river dominated ocean margins

  • Received Date: 2013-01-22
  • River dominated ocean margins (RiOMars) are the major depocenter of terrestrial organic carbon and are recognized as the most important zone for land-sea interactions, and play a very important role in global biogeochemical cycle of carbon. Effective remineralization of sedimentary organic carbon (SOC) occurs in these systems instead of efficient preservation and burial due to frequent physical and/or biological reworking of sediments in upper layer. In this paper, we introduced two kinds of commonly used methods for the determination of remineralization rate of SOC based on the consumption of O2 and production of CO2, respectively. Advantages, disadvantages and applicability of these methods were analyzed. In order to obtain a better understanding of the remineralization of SOC and its impact on carbon sink in continental margins, major processes and characteristics of the remineralization of SOC in RiOMars were summarized into several aspects including transformation of carbon forms, homogeneous vertical distribution of surface sediments, suboxic redox properties, low preservation of organic carbon, occurrence of "reverse weathering" and high microbial biomass.
  • loading
  • Mckee B A, Aller R C, Allison M A, et al. Transport and transformation of dissolved and particulate materials on continental margins Influenced by major rivers: benthic boundary layer and seabed processes[J]. Continental Shelf Research, 2004, 24: 899-926.
    Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences, 2009, 106: 8085-8092.
    Dagg M, Benner R, Lohrenz S E, et al. Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes[J]. Continental Shelf Research, 2004, 24: 833-858.
    Aller R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J]. Marine Chemistry, 1998, 61: 143-155.
    Hedges J I, Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J]. Marine Chemistry, 1995, 49: 81-115.
    Meade R H. River-sediment inputs to major deltas[M]// Milliman J D,Haq B U. Sea-level Rise and Coastal Subsidence. London: Kluwer, 1996: 63-85.
    Burdige D J. Preservation of organicmatter inmarine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? [J]. Chem Rev, 2007, 107:467-85.
    Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? [J]. Org Geochem, 1997, 27:195-212.
    Gordon E S, Goi M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern gulf of Mexico[J]. Geochim Cosmochim Acta, 2003, 67:2359-2375.
    Borges A V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the Coastal Ocean? [J]. Estuaries, 2005, 28: 3-27.
    Cai W J, Dai M H, Wang Y C. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J]. Geophysical Research Letters, 2006, 33, L12603.
    Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. PNAS, 2011, 108(49): 19473-19481.
    Zonneveld K A F, Versteegh G J M, Kasten S. Selective preservation of organic matter in marine environments-processes and impact on the fossil record[J]. Biogeosciences Discussions, 2009, 6: 6371-6440.
    Neibauer J. Carbon remineralization rates in marine sediments beneath areas of high and low primary productivity in the Galapagos Archipelago . Washington: University of Washington, 2006.
    Sauter E J, Schlüter M, Suess E. Organic carbon flux and remineralization in surface sediments from the northern North Atlantic derived from pore-water oxygen microprofiles[J]. Deep-Sea Research I, 2001, 48: 529-553.
    Libes S M. Introduction to marine biogeochemistry[M]. 2nd ed. Amsterdam: Academic Press, 2009:161.
    许昆明, 胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
    Epping E, van der Zee C, Soetaert K, et al. On the oxidation and burial of organic carbon in sediments of the Iberian margin and Nazare canyon (NE Atlantic)[J]. Progress in Oceanography, 2002, 52: 399-431.
    Lansard B, Rabouille C, Denis L, et al. Benthic remineralization at the land-ocean interface: Case study of the Rhne River (NW Mediterranean Sea)[J]. Estuarine, Coastal and Shelf Science, 2009, 81: 544-555.
    Martin W R, McNichol A P, McCorkle D C. The radiocarbon age of calcite dissolving at the sea floor: estimates from pore water data[J]. Geochimica et Cosmochimica Acta, 2000, 64: 1391-1404.
    Papadimitriou S, Kennedy H, Thomas D N. Rates of organic carbon oxidation in deep sea sediments in the eastern North Atlantic from pore water profiles of O2 and the δ13C of dissolved inorganic carbon[J]. Marine Geology, 2004, 212: 97-111.
    Martin W R, Sayles F L. CaCO3 dissolution in sediments of the Ceara Rise, western equatorial Atlantic[J]. Geochimica et Cosmochimica Acta, 1996, 60(2): 243-263.
    Ogrinc N, Faganeli J, Pezdic J. Determination of organic carbon remineralization in near-shore marine sediments (Gulf of Trieste, Northern Adriatic) using stable carbon isotopes[J]. Organic Geochemistry, 2003, 34: 681-692.
    Aller R C, Blair N E, Brunskill G J. Early diagenetic cycling, incineration, and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea)[J]. Journal of Geophysical Research, 2008, 113, F01S09.
    Aller R C, Blair N E, Xia Q, et al. Remineralization rates, recycling and storage of carbon in Amazon shelf sediments[J]. Continental Shelf Research, 1996, 16: 753-786.
    Aller R C, Blair N E. Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes[J]. Geochimica et Cosmochimica Acta, 2004, 68: 1815-1825.
    Aller R C, Blair N E. Carbon remineralization in the Amazon-Guianas mobile mudbelt: a sedimentary incinerator[J]. Continental Shelf Research, 2006, 26: 2241-2259.
    于志刚, 姚鹏, 甄毓, 等. 河口底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5): 1-8.
    姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1): 154-160.
    Milliman J D, Farnsworth K L. River discharge to the coastal ocean: a global synthesis[M]. Cambridge University Press, 2011:392.
    Alongi D M, Wirasantosa S, Wagey T, et al. Early diagenetic processes in relation to river discharge and coastal upwelling in the Aru Sea, Indonesia[J]. Marine Chemistry, 2012, 140/141: 10-23.
    Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic ox?捤祡捴汩敯獮?慯湦搠?瑥桴敨?獮敥搠椨流敏湍琩愠物祮?牭敡捲潩牮摥嬠?嵥???敥潮捴桳椺洠楁挠慭?敤瑥??潮獧洠潰捥桲楳浰楥捣慴??捥瑛慊??㈠ぅ?ひ?????????????????扳爬?嬲??崱??氱愰椶爺?丱‰????氰氮攼牢?刾????吠桓敵?晫慥瑮敳?潋昬?瑓散牨牭敩獤瑴爠楓愬氠?潥牬杩慬湬楥挠?挬愠牥扴漠湡?椮渠?瑥桮整?浩慣爠楲湥敭?敮湥癲楡牬潩湺浡整湩瑯孮?嵩???湨湥甠?副敲癴??慥牳?匠捅極???づ??????????????㈠???执物?嬠??嵯??慨捥歲敮渠穂楡敹???吠???畣浡灹???剝??剃敯癮整物獮敥?睴敡慬琠桓敨牥楬湦朠??捳汥慡祲?浨椬渠攲爰愱氱?映漳爱洺愠琶椴漴渭?‵愸渮搼?潲挾敛愳渴楝挠?敡汯攠浐攬渠瑚?捡祯挠求攬猠??倠敚爠獇瀬攠捥瑴椠癡敬?嬠?嵵??卡捬椬攠湰捲敥??????????????????????扡牬?孺??嵩??椠捯桦愠汳潥灤潩畭汥潮獴?偲???汲汧敡牮?剣????剢慯灮椠摩?挠汭慵祤?浤楥湰敯牳慩汴?映潯牦洠慡琠楴潥湭?楥湲??浥愠穬潡湲?摥攭汲瑩慶?獲攠摤楥浬整湡琭獦??剮整瘠敥牳獴敵?睲敹慛瑊桝攮爠楍湡杲?慮湥搠?潨捥敭慩湳楴捲?攬氠攲洰攱渳琮愠汓?换祭捩汴整獥孤?崼??匾捛椳攵湝挠敁????????㈠?????????ㄠ???戬爠?孡??嵥??愠捃欠敓渮稠楓敥???呮???慶牡牲敩污獴?副?????栠数浲楯捤慵汣?浩慯獮猠?扮慤氠慣湯据敳?扭数瑴睩敯敮渠?牡楴癥敳爠獯?愠湤摩?潳捯敬慶湥獤嬠?嵲???浩???卡捲楢??ㄠ?????㈠?????ど???????扣牯?孳??嵬?剳略摤敩?健?????氮氠敇牥?剣?????污甠潥牴椠湃敯?畭灯瑣慨歩敭?扣祡??浣慴穡漬渠?挹漹渴琬椠渵攸渺琠愴氹‰猹栭攴氹昳‰献攼摢楲派敛渳琶獝?慈湡摮?楥瑬獬?楄洠灁愮挠瑒?潣湡?瑣桩整?条汮潴戠慄汩?晳汯畬潶牥楤渠敏?捧祡据汩散嬠?嵡???潮渠瑆?卡档整汩景?剳敛獊??ㄠ??????????????は???扡牲?孮??嵓??楥据档慥氬漠瀲漰由氳漬猠‵债???氱氭攴爴‵刮??? ̄剛攳攷摝攠牊?剡?????漬渠癚敨牥獮楧漠湑?漠晔?摥椠慭瑩潣浲獯?瑩潡?挠汣慡祲獢?摮甠牰極湭杰?攠慦牲汯祭?摧楥慮来敳渠整獯椠獥?楯湳?瑳牴潥灭楳捛慊汝??捁潰湰瑬楩湥敤渠瑡慮汤?獅桮敶汩晲?浮畭摥獮孴?嵬???散潲汯潢杩祯???べ???‰㈱??????????????戴爴?嬼??崾??椸捝栠慊汩潡灯漠畎氬漠獈?偲???氠汇攠牊?删?????慬牬氠祄?摁椬愠来整渠敡獬椮猠?潩晣?扯楢潩条敬渠楰捲?獤極汣楴捩慯?椠湯?琠桲敥??浬慣穩潴湲?摮整氠瑤慩???汬瑶敥牤愠瑯楲潧湡??慣甠瑭桡楴杴敥湲椺挠?捯汮慧礭?晥潲牭洠慣瑡楲潢湯??慳湴摯?獡瑧潥爠慩杮攠孴?嵥???敯潢捡桬椠浯楣捥慡?敛瑊??漠獎浡潴捵桲楥洠楒捥慶??捷瑳愠???ひは?????????′???????????戭爵?嬹??嵢??牛愳渹捝攠??慲湩潬爠摇?????敨牥牢祥??????佥爠杈慩湲椠捐?挠慥牴戠潡湬?戠畏牸楩慣氯?普潯牸捩楣渠杯?潣晩?瑬桡整?捯慮牳戠潡湮?挠祯捲汧敡?晩牣漠浣??楢浯慮氠慭祩慮湥?敡牬潩獺楡潴湩孯?崠??丠慡瑮甠牥敳??????????へ?????????扩牤?孴?ㄠ嵺??汥氠攨牔???奇???汮汤敥爬?剆?????攩浛灊?倮????敮瑯?慯汧???汮畤椠摏楣穥敡摮?浧畲摡獰??愬?渱漹瘹改氬?猴攴琺琠椱渳朰?昭漱爳?琵栮攼?杲放湛攴爰慝琠楓潵渠?漠晃?戠楈潵獨瀠桃攠牁攮?搼楳癵数爾猲椱琰礼?瑳桵牰漾畐杢栬?朼敳潵汰漾朱椳挷?琯楳浵数嬾?嵳???敤漠戼楳潵汰漾朲礳?※监??ふ? ̄????????????扵牰?子?㈠嵩??畅穡祳慴欠潃癨?奮???牥楡攠摳敥汤??????区琠慳桯牵????刬攠癰楡整睨?潡晹?洠敡据桤愠湢極獤浧獥?慳渠摯?焠畳慥湤瑩業晥楮捴慳琠楡潮湤?潲晡?灩牯椠浮極湣杬?敤晥晳敛捊瑝献嬠?嵡??卮潥椠汇??楬潯汧潹本礠′?‰?椬漠挱核攳洺椠猱琶爳礭??劳??ぢ? ̄?名??ㄠ?????????Guo Z G, Yang Z S, et al. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions[J]. Environmental Pollution, 2008, 156: 1325-1331.
    Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: Implications for oceanic isotope
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1718) PDF downloads(1767) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return