Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
HUANG Yuanhui, GE Shulan, SHI Xuefa, CHEN Zhihua, LIU Yanguang, WANG Xuchen, HE Lianhua. An age model reconstruction of Core BR07 from the northern continental slope of the Bering Sea[J]. Haiyang Xuebao, 2013, 35(6): 67-74.
Citation: HUANG Yuanhui, GE Shulan, SHI Xuefa, CHEN Zhihua, LIU Yanguang, WANG Xuchen, HE Lianhua. An age model reconstruction of Core BR07 from the northern continental slope of the Bering Sea[J]. Haiyang Xuebao, 2013, 35(6): 67-74.

An age model reconstruction of Core BR07 from the northern continental slope of the Bering Sea

  • Received Date: 2013-02-01
  • The age model of Core BR07 is reconstructed based on the comparisons of diatom distributions and color parameters of the sediments between Cores B5-4 and BR07, both collected from the northern continental slope of the Bering Sea. According to this age model, the deposition ages of Core BR07 range from 1.9 to 11.3 kaBP, with an average sedimentation rate of 28.5 cm/ka which is slightly lower than that of Core B5-4. A sea-ice proxy, defined as the ratio of Fragilariopsis cylindrus content to (F. cylindrus content+Neodenticula seminae content), is proposed to reconstruct the historic climate record of sea-ice changes over the last 10 ka. Three cold events (including the Younger Dryas cold event) as well as one warm event since the last deglacial period have been detected in the core. The reconstructed time span of the Younger Dryas cold event in Core BR07 is 11.3~10.7 ka BP, close to its correspondent of 12.9~11.6 ka BP from Greenland ice cores, further confirming that it is more reliable than the age generated from the radiocarbon dating of the bulk sediment organic carbon.
  • loading
  • Takahashi K. The Bering Sea and paleoceanography[J]. Deep Sea Research Part Ⅱ, 2005, 52: 2080-2091.
    Cook M S, Keigwin L D, Sancetta C A. The deglacial history of surface and intermediate water of the Bering Sea[J]. Deep-Sea Research Ⅱ, 2005, 52: 2163-2173.
    Gorbarenko S A, Wang P, Wang R, et al. Orbital and suborbital environmental changes in the southern Bering Sea during the last 50 kyr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 286: 97-106.
    Okada M, Takagi M, Narita H, et al. Chronostratigraphy of sediment cores from the Bering Sea and the subarctic Pacific based on paleomagnetic and oxygen isotopic analyses[J]. Deep-Sea Research Ⅱ, 2005, 52: 2092-2109.
    Wang R, Li X, Xiao W S, et al. Paleoceanographic records and sea ice extension history on the slope of the northern Bering Sea over the last 100 ka BP[J]. Acta Oceanologica Sinica, 2005, 24: 117-126.
    Sancetta C, Robinson S W. Diatom evidence on Wisconsin and Holocene events in the Bering Sea[J]. Quaternary Research, 1983, 20: 232-245.
    王汝建, 陈荣华. 白令海晚第四纪的Cycladophora davisiana:一个地层学工具和冰期亚北极太平洋中层水的替代物[J]. 中国科学, D辑, 2005, 35 (2) : 149-157.
    葛淑兰, 石学法, 黄元辉, 等. 白令海岩芯记录的冰消期14 ka以来地磁场强度和方向[J]. 地球物理学报, 2013. 56: 3071-3084.
    张海生. 中国第三次北极科学考察报告[R]. 北京: 海洋出版社, 2009:1-225.
    中国首次北极科学考察队. 中国首次北极科学考察报告[M]. 北京: 海洋出版社, 2000:1-191.
    Grebmeier J M, Cooper L W, Feder H M, et al. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic[J]. Progress in Oceanography, 2006, 71: 331-361.
    Hkansson H. The recent diatom succession of Lake Havgrdssjn, south Sweden//Mann D G. Proceeding of the Seventh International Diatom Symposium. Otto Koeltz: Philadelphia, 1984: 411-429.
    Schrader H J. Proposal for a standardized method of cleaning diatom-bearing deep-sea and land-exposed marine sediments[J]. Beiheft zur Nova Hedwigia, 1974, 45: 403-409.
    黄元辉, 石学法, 吕华华, 等. 白令海特征区域的表层沉积硅藻分布及其古海洋学意义[J]. 海洋学报, 2012, 34: 106-113.
    Elias S A, Short S K, Nelson C H, et al. Life and times of the Bering land bridge[J]. Nature, 1996, 382: 60-63.
    Boucsein B, Stein R. Black shale formation in the late Paleocene/early Eocene Arctic Ocean and paleoenvironmental conditions: New results from a detailed organic petrological study[J]. Marine and Petroleum Geology, 2009, 26 (3) : 416-426.
    Cai M H, Lin J, Hong Q Q, et al. Content and distribution of trace metals in surface sediments from the northern Bering Sea, Chukchi Sea and adjacent Arctic areas[J]. Marine pollution bulletin, 2011, 63: 523-527.
    Lowe J J, Walker M J C. Reconstructing quaternary environments, 2nd edition[M]. London: Addison-Wesley-Longman, 1997:245-246.
    Carlson P R, Karl H A. Development of large submarine canyons in the Bering Sea, indicated by morphologic, seismic, and sedimentologic characteristics[J]. Geological Society of America Bulletin, 1988, 100: 1594-1615.
    王汝建, 李霞, 肖文申, 等. 白令海北部陆坡100ka来的古海洋学记录及海冰的扩张历史[J]. 地球科学:中国地质大学学报, 2005, 30: 550-558.
    Crockford S J, Frederick S G. Sea ice expansion in the Bering Sea during the Neoglacial: evidence from archaeozoology[J]. The Holocene, 2007, 17: 699-706.
    Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ18O climate record of the past 16, 500 years and the role of the sun, ocean, and volcanoes[J]. Quaternary Research, 1995, 44: 341-354.
    Hou J, Huang Y, Shuman B N, et al. Abrupt cooling repeatedly punctuated early-Holocene climate in eastern North America[J]. The Holocene, 2011, 22: 525-529.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1086) PDF downloads(1041) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return