Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
LIU Yan-guang, SHI Xue-fa, SUK Bong-Chool, LI Chao-xin, WANG Kun-shan, LI Xiao-yan. The depositional environment in the southern Ulleung Basin in the East Sea since the last 48 000 a[J]. Haiyang Xuebao, 2010, 32(1): 94-106.
Citation: LIU Yan-guang, SHI Xue-fa, SUK Bong-Chool, LI Chao-xin, WANG Kun-shan, LI Xiao-yan. The depositional environment in the southern Ulleung Basin in the East Sea since the last 48 000 a[J]. Haiyang Xuebao, 2010, 32(1): 94-106.

The depositional environment in the southern Ulleung Basin in the East Sea since the last 48 000 a

Funds:  无
  • Received Date: 2009-03-12
  • Sedimentological data are acquired from a piston core KCES1 off the southern Ulleung Basin margin in the East Sea (the Sea of Japan). These data include sediment color, X-ray radiographs, grain-size distribution and AMS carbon-14 dating. Four kinds of sediments (homogeneous, laminated, crudely laminated and hybrid sediments) are identified according to the characteristics of the sedimentary structures that are considered to reflect changes in bottom-water oxygenation. The alternations of dark laminated /crudely laminated sediments and light homogeneous sediments represent millennial-scale variations which are possibly associated with the high-resolution changes in East Asian monsoon (EAM). The relative contributions of the East China Sea coastal water (ECSCW) and the Tsushima Warm Current (TWC) have been likely main reasons for the repetition of the anoxic and oxic depositional conditions in the East Sea since the last 48 ka BP. During the interstadial, the strengthened summer EAM was attributed to the development of expansion of the ECSCW because of more humid climate in central Asia, and more strongly low-salinity, nutrient-enriched water was introduced into the East Sea. The ventilation of deep water was restricted and the dark laminated layer deposited therefore under the anoxic bottom water condition. During the lowest stand of sea level in last glacial maximum, the isolated East Sea dominated by stratified water masses and the euxinic depositional environment formed. The homogenous sediments predominated since 17.5 ka BP indicate that the TWC has intruded into the East Sea gradually with the stepwise rise of sea level and the bottom water oxygen level is high. During the late Younger Dryas (YD) period, the last dark laminated layer deposited because the ventilation of bottom water was restricted by stronger summer EAM. The TWC has strengthened and the bottom water has become oxic again since 10.5 ka BP.
  • loading
  • KHIM B K, BAHK J J, HYUN S, et al. Late Pleistocene dark laminated mud layers from the Korea Plateau, western East Sea/Japan Sea, and their paleoceanographic implications [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 74—87.
    TADA R. Paleoceanographic evolution of the Japan Sea [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 108: 487—508.
    KITAMURA A, TAKANO O, TAKATA H, et al. Late Pliocene-early Pleistocene paleoceanographic evolution of the Sea of Japan [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2001, 172: 81—98.
    OBA T, MURAYAMA M, MATSUMOTO E, et al. AMS14C ages of Japan Sea from the Oki Ridge [J]. Quat Res (Japan), 1995, 34(4): 289—296.
    YAMADA K, ISHIWATARI R. Carbon isotope compositions of long-chain n-alkanes in the Japan Sea sediments: implication for paleoenvironmental changes over the past 85 kyr [J]. Organic Geochemistr, 1999, 30: 367—377.
    GORBARENKO S A, SOUTHON J R. Detailed Japan Sea paleoceanography during the last 25 kyr: constraints from AMS14C dating and (18O of planktonic foraminifera [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2000, 156: 177—193.
    PARK M H, KIM I S, SHIN J B. Characteristics of the late Quaternary tephra layers in the East/Japan Sea and their new occurrences in western Ulleung Basin sediment [J]. Mar Geol, 2003, 202: 135—142.
    ITAKI T, IKEHARA K, MOTOYAMA I, et al. Abrupt ventilation changes in the Japan Sea over the last 30 ky: evidence from deep-dwelling radiolarians[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 208: 263—278.
    LEE K E. Surface water changes recorded in late quaternary marine sediments of the Ulleung Basin, East Sea (Japan Sea) [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 18—31.
    TADA R, KOIZUMI I, CRAMP A, et al. Correlation of dark and light layers and the origin of their cyclicity in the Quaternary sediments from the Japan Sea //PISCIOTTO K A, INGLE J C, von BREYMANN J, et al. Proceedings of the Ocean Drilling Program, Scientific Results, 127/128(Part 1): College Station.Texas: Ocean Drilling Program, 1992: 577—601.
    BAHK J J, CHOUGH S K, HAN S J. Origins and paleoceanographic significance of laminated muds from the Ulleung Basin, East Sea (Sea of Japan) [J]. Mar Geol, 2000, 162: 459—477.
    ARTHUR, M A, SAGEMAN, B B. Marine black shale: depositional environments of ancient deposits [J]. Ann Rev Earth Planet Sci, 1994, 22: 499—551.
    BEHL R J, KENNETT J P. Brief interstadial events in the Santa Barbara basin, NE Pacific, during the past 60 kyr [J]. Nature, 1996, 379: 243—246.
    DIEGO T D, DOUGLAS R G. Oxygen-related sediment microfabrics in modern "black shales", Gulf of California, Mexico [J]. J Foram Res, 1999, 29 (4): 453—464.
    SCHULZ H, VON R U, ERLENKAUSER H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110 000 years [J]. Nature, 1998, 393: 54—57.
    PETERSON L C, HANG G H, HUGHEN K A, et al. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial [J]. Science, 2000, 290: 1947—1950.
    KEMP A E S. Laminated sediments as palaeo-indicators [M]//KEMP A E S. Palaeoclimatology and Palaeoceanography from Laminated Sediments. Geological Society Special Publication 116. London: the Geological Society of London, 1996: Ⅶ-Ⅷ.
    WANG P X. Response of western pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features [J]. Mar Geol, 1999, 156: 5—39.
    OBA T, KATO M, KITAZATO H, et al. Paleoenvironmental changes in the Japan Sea during the last 85 000 years [J]. Paleoceanography, 1991, 6: 499—518.
    WATANABE S, TADA R, IKEHARA K, et al. Sediment fabrics, oxygenation history, and circulation modes of Japan Sea during the Late Quaternary [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 50—64.
    KATO M. Japan Sea since the last glacial age: foraminifera mainly based on analysis of core KH-79-3, C-3 [J]. Chikyu (Monthly, the Earth) (in Japanese), 1984, 6: 529—536.
    TADA R, IRINO T, KOIZUMI I. Land ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea [J]. Paleoceanography, 1999, 14(2): 236—247.
    NAKAJIMA T, KIKKAWA K, IKEHARA K, et al. Marine sediments and late Quaternary stratigraphy in the southeastern part of the Japan Sea concerning the timing of dark layer deposition [J]. J Geol Soc Japan (in Japanese), 1996, 102(2): 125—138.
    CRUSIUS J, PEDERSEN T F, CALVERT S E. A 36 kyr geochemical record from the Sea of Japan of organic matter flux variations and changes in intermediate water oxygen concentrations [J]. Paleoceanography, 1999, 14(2): 248—259.
    WANG L, OBA T. Tele-connections between East Asian monsoon and the high-latitude climate: a comparison between the GISP2 ice core record and the high resolution marine records from the Japan and the South China seas [J]. Quat Res, 1998, 37 (3): 221—219.
    IKEDA M, SUZUKI F, OBA T. A box model of glacial-interglacial variability in the Japan Sea [J]. J Oceanogr, 1999, 55: 483—492.
    KIM K, KIM K R, KIM Y G, et al. New findings from CREAMS observations: water masses and eddies in the East Sea [J]. J Korean Soc Oceanogr, 1996, 31: 155—163.
    ISOBE A. On the origin of the Tsushima Warm Current and it seasonality [J]. Continental Shelf Research, 1999, 19: 117—133.
    LEE H J, CHOUGH S K, YOON S H. Slope-stability change from late Pleistocene to Holocene in the Ulleung Basin, East Sea (Japan Sea) [J]. Sediment Geol, 1996, 104: 39—51.
    LEE K E, BAHK J J, CHOI J Y. Alkenone temperature estimates for the East Sea during the last 190 000 years [J]. Organic Geochemistry, 2008, 39: 741—753.
    BAHK J J, CHOUGH S K, JEONG K S, et al. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea/Sea of Japan [J]. Global and Planetary Change, 2001, 28: 241—253.
    CHUN J H, CHEONG D K, IKEHARA K, et al. Age of the SKP-I and SKP-II tephras from the southern East Sea/Japan Sea: implications for interstadial events recorded in sediment from marine isotope stages 3 and 4 [J]. Palaeogeo Palaeoclimatol Palaeoecol, 2007, 247: 100—114.
    KHIM B K, IKEHARA K, SHIN Y. Unstable Holocene climate in the northeastern East Sea (Sea of Japan): evidence from a diatom record [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 216: 251—265.
    IKEHARA K, ITAKI T. Millennial-scale fluctuations in seasonal sea-ice and deep-water formation in the Japan Sea during the late Quaternary [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 131—143.
    KIDO Y, MINAMI I, TADA R, et al. Orbital-scale stratigraphy and high-resolution analysis of biogenic components and deep-water oxygenation conditions in the Japan Sea during the last 640 kyr [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 32—49.
    YOKOYAMA Y, KIDO Y, TADA R, et al. Japan Sea oxygen isotope stratigraphy and global sea-level changes for the last 50 000 years recorded in sediment cores from the Oki Ridge [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 5—17.
    ISHIWATARI R, HOUTATSU M, OKADA H. Alkenone-sea surface temperature in the Japan Sea over the past 36 kyr: warm temperature at the last glacial maximum [J]. Mar Geol, 2001, 32: 57—67.
    HAYASHIDA A, HATTORI S, ODA H. Diagenetic modification of magnetic properties observed in a piston core (MD01-2407) from the Oki Ridge, Japan Sea [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 247: 65—73.
    STUIVER M, REIMER P J. Extended 14C database and revised CALIB radiocarbon calibration program [J]. Radiocarbon, 1993, 35: 215—230.
    LIU Y G, OLE B N, ZHANG D Y, et al. Holocene tephra deposits in the northern Okinawa Trough [J]. Acta Oceanologica Sinica, 2006, 25(1): 78—89.
    KITAGAWA H, FUKUZAWA H, NAKAMURA T, et al. AMS14C dating of varved sediments from Lake Suigetsu, central Japan and atmospheric 14C change during the late Pleistocene [J]. Radiocarbon, 1995, 37: 371—378.
    MACHIDA H. The stratigraphy, chronology and distribution of distal marker-tephras in and around Japan [J]. Global and Planetary Change, 1999, 21: 71—94.
    KUMAMOTO Y, YONEDA M, SHIBATA Y, et al. Direct observation of the rapid turnover of the Japan Sea bottom water by means of AMS radiocarbon measurement [J]. Geophys Res Lett, 1998, 25: 651—654.
    GAMO T. Global warming may have slowed down the deep conveyer belt of a marginal sea of the northwestern Pacific: Japan Sea [J]. Geophysical Res Lett, 1999, 26: 3137—3140.
    SIDDALL M, ROHLING E J, ALMOGI-LABIN A, et al. Sea-level fluctuations during the last glacial cycle [J]. Nature, 2003, 423: 853—856
    IJIRI A, WANG L, OBA T, et al. Paleoenvironmental changes in the northern area of the East China Sea during the past 42 000 years [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 219: 239—261.
    LAMBECK K, YOKOYAMA Y, PURCELL T. Into and out of the last glacial maximum: sea-level change during oxygen isotope stages 3 and 2 [J]. Quaternary Science Reviews, 2002, 21: 343—360.
    LIU J P, MILLIMAN J D, GAO S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea [J]. Mar Geol, 2004, 209: 45—67.
    WANG Y J, CHENG H, EDWARDS R L, et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224 000 years [J]. Nature, 2008, 451: 1090—1093.
    XU X, ODA M. Surface-water evolution of the eastern East China Sea during the last 36 000 years [J]. Mar Geol, 1999, 156: 285—304.
    LI T G, SUN R T, ZHANG D Y, et al. Evolution and variation of the Tsushima Warm Current during the late quaternary: evidence from planktonic foraminifera, oxygen and carbon isotopes [J]. Science in China: Series D, 2007, 50(5): 725—735.
    FAIRBANKS R G. A 17 000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep ocean circulation [J]. Nature, 1989, 342: 637—642.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1696) PDF downloads(1016) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return