Citation: | Han Shuo,Dong Dazheng,Shi Benwei, et al. Study on the Impact of Salt Marsh Vegetation Patches on Tidal Flat Erosion and Accretion Under the Influence of Typhoon "Yanhua"[J]. Haiyang Xuebao,2025, 47(x):1–12 |
[1] |
Gu Jiali, Luo Min, Zhang Xiujuan, et al. Losses of salt marsh in China: trends, threats and management[J]. Estuarine, Coastal and Shelf Science, 2018, 214: 98−109. doi: 10.1016/j.ecss.2018.09.015
|
[2] |
Shepard C C, Crain C M, Beck M W. The protective role of coastal marshes: a systematic review and meta-analysis[J]. PloS One, 2011, 6(11): e27374. doi: 10.1371/journal.pone.0027374
|
[3] |
Mury A, Collin A, Houet T, et al. Using multispectral drone imagery for spatially explicit modeling of wave attenuation through a salt marsh meadow[J]. Drones, 2020, 4(2): 25. doi: 10.3390/drones4020025
|
[4] |
Drake K, Halifax H, Adamowicz S C, et al. Carbon sequestration in tidal salt marshes of the Northeast United States[J]. Environmental Management, 2015, 56(4): 998−1008. doi: 10.1007/s00267-015-0568-z
|
[5] |
Sheehan L, Sherwood E T, Moyer R P, et al. Blue carbon: an additional driver for restoring and preserving ecological services of coastal wetlands in Tampa Bay (Florida, USA)[J]. Wetlands, 2019, 39(6): 1317−1328. doi: 10.1007/s13157-019-01137-y
|
[6] |
Wang Xuming, Wang Weiqi, Tong Chuan. A review on impact of typhoons and hurricanes on coastal wetland ecosystems[J]. Acta Ecologica Sinica, 2016, 36(1): 23−29. doi: 10.1016/j.chnaes.2015.12.006
|
[7] |
Chen H, Lu W, Yan G, et al. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China[J]. Biogeosciences, 2014, 11(19): 5323−5333. doi: 10.5194/bg-11-5323-2014
|
[8] |
Babcock R C, Bustamante R H, Fulton E A, et al. Corrigendum: severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast[J]. Frontiers in Marine Science, 2019, 6: 558. doi: 10.3389/fmars.2019.00558
|
[9] |
Roman C T, Niering W A, Warren R S. Salt marsh vegetation change in response to tidal restriction[J]. Environmental Management, 1984, 8(2): 141−149. doi: 10.1007/BF01866935
|
[10] |
张金池, 臧廷亮, 曾锋. 岩质海岸防护林树木根系对土壤抗冲性的强化效应[J]. 南京林业大学学报, 2001, 25(1): 9−12.
Zhang Jinchi, Zang Tingliang, Zeng Feng. A study on soil anti-scourability intensification of protective forest root system in bedrock coast[J]. Journal of Nanjing Forestry University, 2001, 25(1): 9−12.
|
[11] |
Marin‐Diaz B, Govers L L, van der Wal D, et al. The importance of marshes providing soil stabilization to resist fast‐flow erosion in case of a dike breach[J]. Ecological Applications, 2022, 32(6): e2622. doi: 10.1002/eap.2622
|
[12] |
Ford H, Garbutt A, Ladd C, et al. Soil stabilization linked to plant diversity and environmental context in coastal wetlands[J]. Journal of Vegetation Science, 2016, 27(2): 259−268. doi: 10.1111/jvs.12367
|
[13] |
李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.
Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
|
[14] |
Rupprecht F, Möller I, Paul M, et al. Vegetation-wave interactions in salt marshes under storm surge conditions[J]. Ecological Engineering, 2017, 100: 301−315. doi: 10.1016/j.ecoleng.2016.12.030
|
[15] |
Temmerman S, Horstman E M, Krauss K W, et al. Marshes and mangroves as nature-based coastal storm buffers[J]. Annual Review of Marine Science, 2023, 15: 95−118. doi: 10.1146/annurev-marine-040422-092951
|
[16] |
张振伟, 刘贞文, 刘必劲. 风暴潮与盐沼相互作用研究进展[J]. 海洋开发与管理, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008
Zhang Zhenwei, Liu Zhenwen, Liu Bijin. A review of dynamic interactions between coastal storms and salt marshes[J]. Ocean Development and Management, 2019, 36(7): 42−48. doi: 10.3969/j.issn.1005-9857.2019.07.008
|
[17] |
任璘婧, 李秀珍, 杨世伦, 等. 崇明东滩盐沼植被变化对滩涂湿地促淤消浪功能的影响[J]. 生态学报, 2014, 34(12): 3350−3358.
Ren Linjing, Li Xiuzhen, Yang Shilun, et al. The impact of salt marsh change on sediment accumulation and wave attenuation at the East Chongming Island[J]. Acta Ecologica Sinica, 2014, 34(12): 3350−3358.
|
[18] |
Barras J A. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita[C]//Science and the Storms: the USGS Response to the Hurricanes of 2005. Dennis: USGS, 2005: 97−112.
|
[19] |
Vandenbruwaene W, Bouma T J, Meire P, et al. Bio‐geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change[J]. Earth Surface Processes and Landforms, 2013, 38(2): 122−132. doi: 10.1002/esp.3265
|
[20] |
杨世伦, 时钟, 赵庆英. 长江口潮沼植物对动力沉积过程的影响[J]. 海洋学报, 2001, 23(4): 75−80.
Yang Shilun, Shi Zhong, Zhao Qingying. Influence of tidal marsh vegetations on hydrodynamics and sedimentation in the Changjiang Estuary[J]. Haiyang Xuebao, 2001, 23(4): 75−80.
|
[21] |
Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222. doi: 10.1007/s10236-014-0804-8
|
[22] |
秦伟, 曹文洪, 郭乾坤, 等. 植被格局对侵蚀产沙影响的研究评述[J]. 生态学报, 2017, 37(14): 4905−4912.
Qin Wei, Cao Wenhong, Guo Qiankun, et al. Review of the effects of vegetation patterns on soil erosion and sediment yield[J]. Acta Ecologica Sinica, 2017, 37(14): 4905−4912.
|
[23] |
Ludwig J A, Wilcox B P, Breshears D D, et al. Vegetation patches and runoff–erosion as interacting ecohydrological processes in semiarid landscapes[J]. Ecology, 2005, 86(2): 288−297. doi: 10.1890/03-0569
|
[24] |
Li Li, Xu Jiayang, Ren Yihan, et al. Effects of wave-current interactions on sediment dynamics in Hangzhou Bay during Typhoon Mitag[J]. Frontiers in Earth Science, 2022, 10: 931472. doi: 10.3389/feart.2022.931472
|
[25] |
Boer M, Puigdefábregas J. Effects of spatially structured vegetation patterns on hillslope erosion in a semiarid Mediterranean environment: a simulation study[J]. Earth Surface Processes and Landforms, 2005, 30(2): 149−167. doi: 10.1002/esp.1180
|
[26] |
沈中原. 坡面植被格局对水土流失影响的实验研究[D]. 西安: 西安理工大学, 2006.
Shen Zhongyuan. Study on the effect of vegetation slope pattern on soil and water loss[D]. Xi’an: Xi’an University of Technology, 2006.
|
[27] |
丁文峰, 李勉. 不同坡面植被空间布局对坡沟系统产流产沙影响的实验[J]. 地理研究, 2010, 29(10): 1870−1878.
Ding Wenfeng, Li Mian. Experimental study on the effect of slope vegetation distribution variation on runoff and sediment yield in slope-gully system[J]. Geographical Research, 2010, 29(10): 1870−1878.
|
[28] |
游珍, 李占斌, 蒋庆丰. 植被在坡面的不同位置对降雨产沙量影响[J]. 水土保持通报, 2006, 26(6): 28−31.
You Zhen, Li Zhanbin, Jiang Qingfeng. Effect of vegetation’s position on slope on sediment yield induced by rainfall[J]. Bulletin of Soil and Water Conservation, 2006, 26(6): 28−31.
|
[29] |
刘红, 何青, 吉晓强, 等. 波流共同作用下潮滩剖面沉积物和地貌分异规律——以长江口崇明东滩为例[J]. 沉积学报, 2008, 26(5): 833−843.
Liu Hong, He Qing, Ji Xiaoqiang, et al. Sediment and geomorphology differentiation of tidal flat profiles combined wave and current actions: a case of the east Chongming tidal flat, Changjiang Estuary[J]. Acta Sedimentologica Sinica, 2008, 26(5): 833−843.
|
[30] |
Yang Shilun, Li H, Ysebaert T, et al. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: on the role of physical and biotic controls[J]. Estuarine, Coastal and Shelf Science, 2008, 77(4): 657−671. doi: 10.1016/j.ecss.2007.10.024
|
[31] |
Tian Bo, Zhang Liquan, Wang Xiangrong, et al. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China[J]. Ecological Engineering, 2010, 36(10): 1383−1388. doi: 10.1016/j.ecoleng.2010.06.016
|
[32] |
张智伟. 台风天气下长江冲淡水扩展的响应机制[D]. 上海: 华东师范大学, 2020.
Zhang Zhiwei. Dynamical response of Changjiang River plume extension to typhoon events[D]. Shanghai: East China Normal University, 2020.
|
[33] |
范吉庆. 台风对长江口潮间带湿地沉积动力过程的影响[D]. 上海: 华东师范大学, 2019.
Fan Jiqing. Influence of typhoon on sedimentary dynamic process of intertidal wetland in Yangtze Estuary[D]. Shanghai: East China Normal University, 2019.
|
[34] |
杨世伦, 陈吉余. 试论植物在潮滩发育演变中的作用[J]. 海洋与湖沼, 1994, 25(6): 631−635.
Yang Shilun, Chen Jiyu. The role of vegetation in mud coast processes[J]. Oceanologia et Limnologia Sinica, 1994, 25(6): 631−635.
|
[35] |
丁文慧, 姜俊彦, 李秀珍, 等. 崇明东滩南部盐沼植被空间分布及影响因素分析[J]. 植物生态学报, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067
Ding Wenhui, Jiang Junyan, Li Xiuzhen, et al. Spatial distribution of species and influencing factors across salt marsh in southern Chongming Dongtan[J]. Chinese Journal of Plant Ecology, 2015, 39(7): 704−716. doi: 10.17521/cjpe.2015.0067
|
[36] |
杨世伦. 长江口沉积物粒度参数的统计规律及其沉积动力学解释[J]. 泥沙研究, 1994(3): 23−31.
Yang Shilun. Statistic features for grain-size parameters of the Yangtze River Estuary and their hydrodynamic explanation[J]. Journal of Sediment Research, 1994(3): 23−31.
|
[37] |
张莹鑫, 张文祥, 史本伟, 等. 淤泥质潮间带植被-光滩沉积物稳定性研究——以长江口崇明东滩为例[J]. 华东师范大学学报(自然科学版), 2022(6): 169−177.
Zhang Yingxin, Zhang Wenxiang, Shi Benwei, et al. Study on sediment stability between vegetation and bare flats in a muddy intertidal flat: a case study for Chongming Dongtan in the Yangtze River Estuary[J]. Journal of East China Normal University (Natural Science), 2022(6): 169−177.
|
[38] |
Li Tianyou, Xue Liming, Zhang Xinmiao, et al. Harvested Spartina area performs better than native Scirpus in sedimentation and carbon preservation under storm surge[J]. Ocean & Coastal Management, 2024, 249: 107002.
|
[39] |
Pei Haojie, Wan Peng, Li Changchun, et al. Accuracy analysis of UAV remote sensing imagery mosaicking based on structure-from-motion[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth: IEEE, 2017: 5904-5907.
|
[40] |
Genchi S A, Vitale A J, Perillo G M E, et al. Structure-from-motion approach for characterization of bioerosion patterns using UAV imagery[J]. Sensors, 2015, 15(2): 3593−3609. doi: 10.3390/s150203593
|
[41] |
Küng O, Strecha C, Fua P, et al. Simplified building models extraction from ultra-light UAV imagery[C]//International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-1/C22. Zurich: ISPRS Zurich 2011 Workshop, 2011: 217-222.
|
[42] |
Karasaka L, Keleş S H. CSF (Cloth simulation filtering) algoritmasının zemin noktalarını Filtrelemedeki Performans Analizi[J]. Afyon Kocatepe Ü niversitesi Fen ve Mühendislik Bilimleri Dergisi, 2020, 20(20): 267−275.
|
[43] |
Li Yameng, Chen Qi, Li Chaokui, et al. Improvement of CSF based on a wide range of urban complex scenes[C]//Proceedings Volume 10779, Lidar Remote Sensing for Environmental Monitoring XVI. Honolulu: SPIE Asia-Pacific Remote Sensing, 2018: 1077911.
|
[44] |
Oliver M A, Webster R. Kriging: a method of interpolation for geographical information systems[J]. International Journal of Geographical Information Systems, 1990, 4(3): 313−332. doi: 10.1080/02693799008941549
|
[45] |
汪小钦, 王苗苗, 王绍强, 等. 基于可见光波段无人机遥感的植被信息提取[J]. 农业工程学报, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022
Wang Xiaoqin, Wang Miaomiao, Wang Shaoqiang, et al. Extraction of vegetation information from visible unmanned aerial vehicle images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 152−159. doi: 10.3969/j.issn.1002-6819.2015.05.022
|
[46] |
Chen Dezhi, Tang Jieping, Xing Fei, et al. Erosion and accretion of salt marsh in extremely shallow water stages[J]. Frontiers in Marine Science, 2023, 10: 1198536. doi: 10.3389/fmars.2023.1198536
|
[47] |
Allen J R L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe[J]. Quaternary Science Reviews, 2000, 19(12): 1155−1231. doi: 10.1016/S0277-3791(99)00034-7
|
[48] |
李华, 杨世伦. 潮间带盐沼植物对海岸沉积动力过程影响的研究进展[J]. 地球科学进展, 2007, 22(6): 583−591.
Li Hua, Yang Shilun. A review of influences of saltmarsh vegetation on physical processes in intertidal wetlands[J]. Advances in Earth Science, 2007, 22(6): 583−591.
|
[49] |
Figlus J, Sigren J M, Feagin R A, et al. The unique ability of fine roots to reduce vegetated coastal dune erosion during wave collision[J]. Frontiers in Built Environment, 2022, 8: 904837. doi: 10.3389/fbuil.2022.904837
|
[50] |
Hauser S, Meixler M S, Laba M. Quantification of impacts and ecosystem services loss in new jersey coastal wetlands due to hurricane sandy storm surge[J]. Wetlands, 2015, 35(6): 1137−1148. doi: 10.1007/s13157-015-0701-z
|
[51] |
Zhao Chunhong, Gao Jian’en, Huang Yuefei, et al. Effects of vegetation stems on hydraulics of overland flow under varying water discharges[J]. Land Degradation & Development, 2016, 27(3): 748−757.
|
[52] |
Kastler J A, Wiberg P L. Sedimentation and boundary changes of Virginia salt marshes[J]. Estuarine, Coastal and Shelf Science, 1996, 42(6): 683−700. doi: 10.1006/ecss.1996.0044
|
[53] |
Francalanci S, Bendoni M, Rinaldi M, et al. Ecomorphodynamic evolution of salt marshes: experimental observations of bank retreat processes[J]. Geomorphology, 2013, 195: 53−65. doi: 10.1016/j.geomorph.2013.04.026
|
[54] |
Molina A, Govers G, Cisneros F, et al. Vegetation and topographic controls on sediment deposition and storage on gully beds in a degraded mountain area[J]. Earth Surface Processes and Landforms, 2009, 34(6): 755−767. doi: 10.1002/esp.1747
|
[55] |
Sun Ruoxiu, Ma Li, Zhang Shouhong, et al. Study on landscape patches influencing hillslope erosion processes and flow hydrodynamics in the Loess Plateau of western Shanxi Province, China[J]. Water, 2020, 12(11): 3201. doi: 10.3390/w12113201
|
[56] |
Ma Gangfeng, Han Yun, Niroomandi A, et al. Numerical study of sediment transport on a tidal flat with a patch of vegetation[J]. Ocean Dynamics, 2015, 65(2): 203−222.
|
[57] |
Zhou Zeng, Ye Qinghua, Coco G. A one-dimensional biomorphodynamic model of tidal flats: sediment sorting, marsh distribution, and carbon accumulation under sea level rise[J]. Advances in Water Resources, 2016, 93: 288−302. doi: 10.1016/j.advwatres.2015.10.011
|
[58] |
Zhu Shibing, Chen Yining, Yan Weibing, et al. The hummocky patches and associated sediment dynamics over an accretional intertidal flat[J]. Frontiers in Earth Science, 2022, 10: 908351. doi: 10.3389/feart.2022.908351
|
[59] |
Zhang Xingchang, Shao Ming’an. Effects of vegetation coverage and management practice on soil nitrogen loss by erosion in a hilly region of the Loess Plateau in China[J]. Acta Botanica Sinica, 2003, 45(10): 1195−1203.
|