Citation: | Liu Liping,Chu Hongxian,Wang Hongsong, et al. Metallogenic mechanism of the Zhaiying Cryogenian marine manganese-bearing formation in South China[J]. Haiyang Xuebao,2025, 47(x):1–18 |
[1] |
Stumm W, Morgan J J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. 2nd ed. New York: John Wiley & Sons, 1981.
|
[2] |
Aguilar C, Nealson K H. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese[J]. Journal of Great Lakes Research, 1998, 24(1): 93−104. doi: 10.1016/S0380-1330(98)70802-0
|
[3] |
Maynard J B. Manganiferous sediments, rocks, and ores[J]. Treatise on Geochemistry, 2003, 7: 289−308.
|
[4] |
Roy S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth-Science Reviews, 2006, 77(4): 273−305. doi: 10.1016/j.earscirev.2006.03.004
|
[5] |
张水昌, 王华建, 王晓梅, 等. 中元古代增氧事件[J]. 中国科学: 地球科学, 2022, 52(1): 26−52.
Zhang Shuichang, Wang Huajian, Wang Xiaomei, et al. The mesoproterozoic oxygenation event[J]. Science China Earth Sciences, 2021, 64(12): 2043−2068.
|
[6] |
Sleep N H. Oxygenating the atmosphere[J]. Nature, 2001, 410(6826): 317−318.
|
[7] |
Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307−315. doi: 10.1038/nature13068
|
[8] |
Maynard J B. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments[J]. Economic Geology, 2010, 105(3): 535−552. doi: 10.2113/gsecongeo.105.3.535
|
[9] |
Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/4): 26−57.
|
[10] |
Myrow P M, Lamb M P, Ewing R C. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth[J]. Science, 2018, 360(6389): 649−651. doi: 10.1126/science.aap8612
|
[11] |
周琦, 杜远生. 华南古天然气渗漏沉积型锰矿[M]. 北京: 科学出版社, 2019: 1−311.
Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Science Press, 2019: 1−311. (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[12] |
周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177−188.
Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. The structure of the Wuling Rift Basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science, 2016, 41(2): 177−188.
|
[13] |
叶云涛, 王华建, 翟俪娜, 等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报, 2017, 35(2): 203−216.
Ye Yuntao, Wang Huajian, Zhai Lina, et al. Geological events and their biological responses during the Neoproterozoic Era[J]. Acta Sedimentologica Sinica, 2017, 35(2): 203−216.
|
[14] |
杨瑞东, 欧阳自远, 朱立军, 等. 早震旦世大塘坡期锰矿成因新认识[J]. 矿物学报, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006
Yang Ruidong, Ouyang Ziyuan, Zhu Lijun, et al. A new understanding of manganese carbonate deposits in early Sinian Datangpo stage[J]. Acta Mineralogica Sinica, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006
|
[15] |
赵东旭. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积[J]. 地质科学, 1990(2): 149−157.
Zhao Dongxu. Intraclastic structures and gravity flow sedim-entation of rhodochrosite ore in Sinian Datangpo Formation[J]. Scientia Geologica Sinica, 1990(2): 149−157.
|
[16] |
刘巽锋, 胡肇荣, 曾励训, 等. 贵州震旦纪锰矿沉积相特征及其成因探讨[J]. 沉积学报, 1983, 1(4): 106−116.
Liu Xunfeng, Hu Zhaorong, Zeng Lixun, et al. Origin and characteristics of sedimentary facies of Sinian manganese deposits in Guizhou[J]. Acta Sedimentologica Sinica, 1983, 1(4): 106−116.
|
[17] |
王自强, 高林志, 丁孝忠, 等. “江南造山带”变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001
Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, et al. Tectonic environment of the metamorphosed basement in the Jiangnan Orogen and its evolutional features[J]. Geological Review, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001
|
[18] |
Yu Wenchao, Algeo T J, Du Yuansheng, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321−337. doi: 10.1016/j.palaeo.2016.05.023
|
[19] |
Liu Liping, Chu Fengyou. Geochemistry of Cryogenian Datangpo manganese deposits in the southeastern Yangtze Platform of South China: implications for the origin of metallogenesis and depositional environment[J]. International Geology Review, 2024, 66(8): 1535−1559. doi: 10.1080/00206814.2023.2243625
|
[20] |
周琦, 杜远生. 古天然气渗漏与锰矿成矿: 以黔东地区南华纪“大塘坡式”锰矿为例[M]. 北京: 地质出版社, 2012: 71−75.
Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Geological Publishing House, 2012: 71−75. (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[21] |
Li Zhengxiang, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179−210.
|
[22] |
Yu Wenchao, Polgári M, Gyollai I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122−135. doi: 10.1016/j.precamres.2019.01.004
|
[23] |
Wang Dan, Zhu Xiangkun, Zhao Nina, et al. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China[J]. Journal of Asian Earth Sciences, 2019, 177: 287−294. doi: 10.1016/j.jseaes.2019.03.015
|
[24] |
Liu Liping, Jiang Zuzhou, Chu Fengyou. Sedimentary Mn metallogenesis and coupling among major geo-environmental events during the sturtian glacial–interglacial transition[J]. Minerals, 2023, 13(6): 712. doi: 10.3390/min13060712
|
[25] |
Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37−47. doi: 10.2343/geochemj.1.0005
|
[26] |
Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1−9. doi: 10.1016/j.chemgeo.2014.05.004
|
[27] |
Zhang Banglu, Wang Changle, Robbins L J, et al. Petrography and geochemistry of the carboniferous ortokarnash manganese deposit in the western Kunlun mountains, Xinjiang Province, China: implications for the depositional environment and the origin of mineralization[J]. Economic Geology, 2020, 115(7): 1559−1588. doi: 10.5382/econgeo.4729
|
[28] |
Okita P M, Shanks III W C. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China[J]. Chemical Geology, 1992, 99(1/3): 139−163.
|
[29] |
Cabral A R, Zeh A, Vianna N C, et al. Molybdenum-isotope signals and cerium anomalies in palaeoproterozoic manganese ore survive high-grade metamorphism[J]. Scientific Reports, 2019, 9(1): 4570. doi: 10.1038/s41598-019-40998-5
|
[30] |
Chisonga B C, Gutzmer J, Beukes N J, et al. Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapa Province, Brazil[J]. Ore Geology Reviews, 2012, 47: 59−76. doi: 10.1016/j.oregeorev.2011.06.006
|
[31] |
Feng Dong, Chen Duofu. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74−83. doi: 10.1016/j.dsr2.2015.02.003
|
[32] |
Yang Kehong, Zhu Zhimin, Dong Yanhui, et al. Petrology and geochemistry of cold seep carbonates from the northern Okinawa Trough, East China Sea: implications to early diagenesis[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1388−1403. doi: 10.1007/s00343-021-1148-0
|
[33] |
冯东. 冷泉碳酸盐岩沉积岩石学及地球化学: 几个典型冷泉渗漏区域的对比研究[D]. 广州: 中国科学院广州地球化学研究所, 2008.
Feng Dong. Petrographic and geochemical characterization of cold seep carbonates: a comparative study of several typical hydrocarbon seep environments[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2008.
|
[34] |
Wei Jiangong, Wu Tingting, Zhang Wei, et al. Deeply buried authigenic carbonates in the Qiongdongnan Basin, South China Sea: implications for ancient cold seep activities[J]. Minerals, 2020, 10(12): 1135. doi: 10.3390/min10121135
|
[35] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
|
[36] |
Bostick B C, Fendorf S, Helz G R. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2)[J]. Environmental Science & Technology, 2003, 37(2): 285−291.
|
[37] |
Giddings J A, Wallace M W. Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216(1/2): 1−14.
|
[38] |
Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle[J]. Earth-Science Reviews, 2011, 106(1/2): 161−183.
|
[39] |
Loyd S J, Marenco P J, Hagadorn J W, et al. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California[J]. Earth and Planetary Science Letters, 2012, 339-340: 79−94. doi: 10.1016/j.jpgl.2012.05.032
|
[40] |
Zhang Feifei, Zhu Xiangkun, Yan Bin, et al. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions[J]. Earth and Planetary Science Letters, 2015, 429: 11−19. doi: 10.1016/j.jpgl.2015.07.021
|
[41] |
Wei Wei, Wang Dan, Li Da, et al. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China[J]. Journal of Earth Science, 2016, 27(2): 233−241. doi: 10.1007/s12583-015-0657-1
|
[42] |
Xu Lingang, Frank A B, Lehmann B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity[J]. Scientific Reports, 2019, 9(1): 15056. doi: 10.1038/s41598-019-51495-0
|
[43] |
Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (bio) geochemical metal cycling in Cryogenian seawater[J]. Geosciences, 2020, 10(1): 36. doi: 10.3390/geosciences10010036
|
[44] |
Ai Jiayi, Zhong Ningning, Zhang Tonggang, et al. Oceanic water chemistry evolution and its implications for post-glacial black shale formation: insights from the Cryogenian Datangpo Formation, South China[J]. Chemical Geology, 2021, 566: 120083. doi: 10.1016/j.chemgeo.2021.120083
|
[45] |
刘莉萍, 吴文昌, 江祖州, 等. 扬子东南缘“湘潭式”锰矿的地球化学特征及成矿机制[J]. 地球化学, 2022, 51(6): 696−715.
Liu Liping, Wu Wenchang, Jiang Zuzhou, et al. Genesis of Cryogenian Xiangtan-type manganese deposits in Hunan Province, China: constraints from geochemical evidence[J]. Geochimica, 2022, 51(6): 696−715.
|
[46] |
齐靓, 余文超, 杜远生, 等. 黔东南华纪铁丝坳期-大塘坡期古气候的演变: 来自CIA的证据[J]. 地质科技情报, 2015, 34(6): 47−57.
Qi Liang, Yu Wenchao, Du Yuansheng, et al. Paleoclimate evolution of the Cryogenian Tiesi’ao formation-Datangpo formation in eastern Guizhou Province: evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47−57.
|
[47] |
Wang Ping, Du Yuansheng, Yu Wenchao, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032. doi: 10.1016/j.earscirev.2019.103032
|
[48] |
Le Heron D P, Busfield M E, Kettler C. Ice-rafted dropstones in “postglacial” Cryogenian cap carbonates[J]. Geology, 2021, 49(3): 263−267. doi: 10.1130/G48208.1
|
[49] |
Calvert S E, Price N B. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments[J]. Earth and Planetary Science Letters, 1972, 16(2): 245−249. doi: 10.1016/0012-821X(72)90197-5
|
[50] |
赵其渊. 海洋地球化学[M]. 北京: 地质出版社, 1989: 118−120.
Zhao Qiyuan. Marine Geochemistry[M]. Beijing: Geological Publishing House, 1989: 118−120. (查阅网上资料, 未找到对应的英文翻译, 请确认)
|
[51] |
Sasmaz A, Zagnitko V M, Sasmaz B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine[J]. Ore Geology Reviews, 2020, 126: 103772. doi: 10.1016/j.oregeorev.2020.103772
|
[52] |
Van Cappellen P, Viollier E, Roychoudhury A, et al. Biogeochemical cycles of manganese and iron at the Oxic-anoxic transition of a stratified marine basin (orca basin, gulf of Mexico)[J]. Environmental Science & Technology, 1998, 32(19): 2931−2939.
|
[53] |
Dekov V M, Maynard J B, Kamenov G D, et al. Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): insights from C, O, Fe, Sr, Nd, and Pb isotopes[J]. Ore Geology Reviews, 2020, 122: 103550. doi: 10.1016/j.oregeorev.2020.103550
|
[54] |
Herndon E M, Havig J R, Singer D M, et al. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta, 2018, 231: 50−63. doi: 10.1016/j.gca.2018.04.013
|
[55] |
Wittkop C, Swanner E D, Grengs A, et al. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters, 2020, 538: 116201. doi: 10.1016/j.jpgl.2020.116201
|
[56] |
Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction[J]. Environmental Microbiology, 2012, 14(10): 2726−2740. doi: 10.1111/j.1462-2920.2012.02825.x
|
[57] |
Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277−283.
|
[58] |
Peng Xiaotong, Guo Zixiao, Chen Shun, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205: 1−13. doi: 10.1016/j.gca.2017.02.010
|
[59] |
Sun Zhilei, Wu Nengyou, Cao Hong, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough[J]. Chemical Geology, 2019, 525: 190−209. doi: 10.1016/j.chemgeo.2019.07.025
|
[60] |
Hein J R, Koski R A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges[J]. Geology, 1987, 15(8): 722−726. doi: 10.1130/0091-7613(1987)15<722:BMDOFC>2.0.CO;2
|
[61] |
Liu Liping, Ryu B, Sun Zhilei, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 82−107. doi: 10.1016/j.jngse.2019.02.007
|
[62] |
冯先翠. 中挪威海Nyegga麻坑区冷泉碳酸盐岩的研究[D]. 广州: 中国科学院广州地球化学研究所, 2015.
Feng Xiancui. Study of Cold-seep carbonates from the Nyegga pockmark field, offshore mid-Norway[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2015.
|
[63] |
Feng Dong, Chen Duofu, Qi Liang, et al. Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico[J]. Chinese Science Bulletin, 2008, 53(11): 1716−1724. doi: 10.1007/s11434-008-0157-0
|
[64] |
Liang Qianyong, Hu Yu, Feng Dong, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31−41. doi: 10.1016/j.dsr.2017.04.015
|
[65] |
Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291−314.
|
[66] |
Olivarez A M, Owen R M. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans[J]. Chemical Geology, 1991, 92(4): 317−328. doi: 10.1016/0009-2541(91)90076-4
|
[67] |
Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70−78. doi: 10.1016/0012-821X(84)90039-6
|