Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Liu Liping,Chu Hongxian,Wang Hongsong, et al. Metallogenic mechanism of the Zhaiying Cryogenian marine manganese-bearing formation in South China[J]. Haiyang Xuebao,2025, 47(x):1–18
Citation: Liu Liping,Chu Hongxian,Wang Hongsong, et al. Metallogenic mechanism of the Zhaiying Cryogenian marine manganese-bearing formation in South China[J]. Haiyang Xuebao,2025, 47(x):1–18

Metallogenic mechanism of the Zhaiying Cryogenian marine manganese-bearing formation in South China

  • Received Date: 2025-02-12
  • Rev Recd Date: 2025-04-22
  • Available Online: 2025-05-26
  • The Zhaiying carbonate-type Mn deposit belongs to the black shale hosted marine manganese(Mn)-bearing formations within the Datangpo Formation in the Nanhua Rift Basin in South China. Unlike other Mn deposits of the Datangpo Formation, parts of the Mn ores in the Zhaiying deposit bear unique bubble structures. To elucidate the metallogenic mechanism of the Zhaiying marine Mn-bearing formation, in this study, petrographic and whole-rock geochemical analyses, including measurements of major and trace elements, organic carbon isotopes, and carbonate carbon stable isotopes, were conducted using the bubble and massive Mn ores as well as host rocks (black shales). The main results are as follows: 1) The PAAS-normalized rare-earth element pattern of the Zhaiying Mn ores exhibits a “hat-shaped” plot. The Mn ores exhibit obvious positive Ce anomalies and are depleted in U and V, implying that the primary depositional environment of the Mn ores was oxidative. Primary Mn oxidizing precipitation has a mechanism similar to marine hydrogenous Mn–Fe nodules and crusts. However, the obvious absence of Ce anomalies and enrichment of pyrites in the host rocks indicate an anoxic depositional environment. 2) The Mn ores are enriched in light δ13Ccarb (−8.53‰ to −10.60‰, averaging at −9.45‰), similar to those belonging to major carbonate-type Mn deposits during geological time. This indicates that primary Mn oxides, as electron acceptors, oxidized organic matter to provide HCO3 for Mn carbonate formation. Moreover, the Zhaiying Mn ores have more negative δ13Ccarb values than other Mn deposits (δ13Ccarb: −8‰ to −6‰) of the Datangpo Formation owing to the greater contribution of carbon from organic matter. 3) The Mn ores have positive Eu anomalies and minor amounts of terrigenous detrital elements (Al, Ti), indicating that the Mn source was hydrothermal. In summary, the results show that the Zhaiying Mn deposit has deposition and mineralizing processes similar to other Mn deposits of the Datangpo Formation in the Nanhua Rift Basin.
  • loading
  • [1]
    Stumm W, Morgan J J. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters[M]. 2nd ed. New York: John Wiley & Sons, 1981.
    [2]
    Aguilar C, Nealson K H. Biogeochemical cycling of manganese in Oneida Lake, New York: whole lake studies of manganese[J]. Journal of Great Lakes Research, 1998, 24(1): 93−104. doi: 10.1016/S0380-1330(98)70802-0
    [3]
    Maynard J B. Manganiferous sediments, rocks, and ores[J]. Treatise on Geochemistry, 2003, 7: 289−308.
    [4]
    Roy S. Sedimentary manganese metallogenesis in response to the evolution of the Earth system[J]. Earth-Science Reviews, 2006, 77(4): 273−305. doi: 10.1016/j.earscirev.2006.03.004
    [5]
    张水昌, 王华建, 王晓梅, 等. 中元古代增氧事件[J]. 中国科学: 地球科学, 2022, 52(1): 26−52.

    Zhang Shuichang, Wang Huajian, Wang Xiaomei, et al. The mesoproterozoic oxygenation event[J]. Science China Earth Sciences, 2021, 64(12): 2043−2068.
    [6]
    Sleep N H. Oxygenating the atmosphere[J]. Nature, 2001, 410(6826): 317−318.
    [7]
    Lyons T W, Reinhard C T, Planavsky N J. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature, 2014, 506(7488): 307−315. doi: 10.1038/nature13068
    [8]
    Maynard J B. The chemistry of manganese ores through time: a signal of increasing diversity of earth-surface environments[J]. Economic Geology, 2010, 105(3): 535−552. doi: 10.2113/gsecongeo.105.3.535
    [9]
    Och L M, Shields-Zhou G A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling[J]. Earth-Science Reviews, 2012, 110(1/4): 26−57.
    [10]
    Myrow P M, Lamb M P, Ewing R C. Rapid sea level rise in the aftermath of a Neoproterozoic snowball Earth[J]. Science, 2018, 360(6389): 649−651. doi: 10.1126/science.aap8612
    [11]
    周琦, 杜远生. 华南古天然气渗漏沉积型锰矿[M]. 北京: 科学出版社, 2019: 1−311.

    Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Science Press, 2019: 1−311. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [12]
    周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学, 2016, 41(2): 177−188.

    Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. The structure of the Wuling Rift Basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area, South China[J]. Earth Science, 2016, 41(2): 177−188.
    [13]
    叶云涛, 王华建, 翟俪娜, 等. 新元古代重大地质事件及其与生物演化的耦合关系[J]. 沉积学报, 2017, 35(2): 203−216.

    Ye Yuntao, Wang Huajian, Zhai Lina, et al. Geological events and their biological responses during the Neoproterozoic Era[J]. Acta Sedimentologica Sinica, 2017, 35(2): 203−216.
    [14]
    杨瑞东, 欧阳自远, 朱立军, 等. 早震旦世大塘坡期锰矿成因新认识[J]. 矿物学报, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006

    Yang Ruidong, Ouyang Ziyuan, Zhu Lijun, et al. A new understanding of manganese carbonate deposits in early Sinian Datangpo stage[J]. Acta Mineralogica Sinica, 2002, 22(4): 329−334. doi: 10.3321/j.issn:1000-4734.2002.04.006
    [15]
    赵东旭. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积[J]. 地质科学, 1990(2): 149−157.

    Zhao Dongxu. Intraclastic structures and gravity flow sedim-entation of rhodochrosite ore in Sinian Datangpo Formation[J]. Scientia Geologica Sinica, 1990(2): 149−157.
    [16]
    刘巽锋, 胡肇荣, 曾励训, 等. 贵州震旦纪锰矿沉积相特征及其成因探讨[J]. 沉积学报, 1983, 1(4): 106−116.

    Liu Xunfeng, Hu Zhaorong, Zeng Lixun, et al. Origin and characteristics of sedimentary facies of Sinian manganese deposits in Guizhou[J]. Acta Sedimentologica Sinica, 1983, 1(4): 106−116.
    [17]
    王自强, 高林志, 丁孝忠, 等. “江南造山带”变质基底形成的构造环境及演化特征[J]. 地质论评, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001

    Wang Ziqiang, Gao Linzhi, Ding Xiaozhong, et al. Tectonic environment of the metamorphosed basement in the Jiangnan Orogen and its evolutional features[J]. Geological Review, 2012, 58(3): 401−413. doi: 10.3969/j.issn.0371-5736.2012.03.001
    [18]
    Yu Wenchao, Algeo T J, Du Yuansheng, et al. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 321−337. doi: 10.1016/j.palaeo.2016.05.023
    [19]
    Liu Liping, Chu Fengyou. Geochemistry of Cryogenian Datangpo manganese deposits in the southeastern Yangtze Platform of South China: implications for the origin of metallogenesis and depositional environment[J]. International Geology Review, 2024, 66(8): 1535−1559. doi: 10.1080/00206814.2023.2243625
    [20]
    周琦, 杜远生. 古天然气渗漏与锰矿成矿: 以黔东地区南华纪“大塘坡式”锰矿为例[M]. 北京: 地质出版社, 2012: 71−75.

    Zhou Qi, Du Yuansheng. Huanan Ancient Natural Gas Seepage Sedimentary-Type Manganese Metallogenesis[M]. Beijing: Geological Publishing House, 2012: 71−75. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [21]
    Li Zhengxiang, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: a synthesis[J]. Precambrian Research, 2008, 160(1/2): 179−210.
    [22]
    Yu Wenchao, Polgári M, Gyollai I, et al. Microbial metallogenesis of Cryogenian manganese ore deposits in South China[J]. Precambrian Research, 2019, 322: 122−135. doi: 10.1016/j.precamres.2019.01.004
    [23]
    Wang Dan, Zhu Xiangkun, Zhao Nina, et al. Timing of the termination of Sturtian glaciation: SIMS U-Pb zircon dating from South China[J]. Journal of Asian Earth Sciences, 2019, 177: 287−294. doi: 10.1016/j.jseaes.2019.03.015
    [24]
    Liu Liping, Jiang Zuzhou, Chu Fengyou. Sedimentary Mn metallogenesis and coupling among major geo-environmental events during the sturtian glacial–interglacial transition[J]. Minerals, 2023, 13(6): 712. doi: 10.3390/min13060712
    [25]
    Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37−47. doi: 10.2343/geochemj.1.0005
    [26]
    Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1−9. doi: 10.1016/j.chemgeo.2014.05.004
    [27]
    Zhang Banglu, Wang Changle, Robbins L J, et al. Petrography and geochemistry of the carboniferous ortokarnash manganese deposit in the western Kunlun mountains, Xinjiang Province, China: implications for the depositional environment and the origin of mineralization[J]. Economic Geology, 2020, 115(7): 1559−1588. doi: 10.5382/econgeo.4729
    [28]
    Okita P M, Shanks III W C. Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango, Mexico, and TaoJiang, China[J]. Chemical Geology, 1992, 99(1/3): 139−163.
    [29]
    Cabral A R, Zeh A, Vianna N C, et al. Molybdenum-isotope signals and cerium anomalies in palaeoproterozoic manganese ore survive high-grade metamorphism[J]. Scientific Reports, 2019, 9(1): 4570. doi: 10.1038/s41598-019-40998-5
    [30]
    Chisonga B C, Gutzmer J, Beukes N J, et al. Nature and origin of the protolith succession to the Paleoproterozoic Serra do Navio manganese deposit, Amapa Province, Brazil[J]. Ore Geology Reviews, 2012, 47: 59−76. doi: 10.1016/j.oregeorev.2011.06.006
    [31]
    Feng Dong, Chen Duofu. Authigenic carbonates from an active cold seep of the northern South China Sea: new insights into fluid sources and past seepage activity[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 74−83. doi: 10.1016/j.dsr2.2015.02.003
    [32]
    Yang Kehong, Zhu Zhimin, Dong Yanhui, et al. Petrology and geochemistry of cold seep carbonates from the northern Okinawa Trough, East China Sea: implications to early diagenesis[J]. Journal of Oceanology and Limnology, 2022, 40(4): 1388−1403. doi: 10.1007/s00343-021-1148-0
    [33]
    冯东. 冷泉碳酸盐岩沉积岩石学及地球化学: 几个典型冷泉渗漏区域的对比研究[D]. 广州: 中国科学院广州地球化学研究所, 2008.

    Feng Dong. Petrographic and geochemical characterization of cold seep carbonates: a comparative study of several typical hydrocarbon seep environments[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2008.
    [34]
    Wei Jiangong, Wu Tingting, Zhang Wei, et al. Deeply buried authigenic carbonates in the Qiongdongnan Basin, South China Sea: implications for ancient cold seep activities[J]. Minerals, 2020, 10(12): 1135. doi: 10.3390/min10121135
    [35]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
    [36]
    Bostick B C, Fendorf S, Helz G R. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2)[J]. Environmental Science & Technology, 2003, 37(2): 285−291.
    [37]
    Giddings J A, Wallace M W. Sedimentology and C-isotope geochemistry of the ‘Sturtian’ cap carbonate, South Australia[J]. Sedimentary Geology, 2009, 216(1/2): 1−14.
    [38]
    Johnston D T. Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle[J]. Earth-Science Reviews, 2011, 106(1/2): 161−183.
    [39]
    Loyd S J, Marenco P J, Hagadorn J W, et al. Sustained low marine sulfate concentrations from the Neoproterozoic to the Cambrian: insights from carbonates of northwestern Mexico and eastern California[J]. Earth and Planetary Science Letters, 2012, 339-340: 79−94. doi: 10.1016/j.jpgl.2012.05.032
    [40]
    Zhang Feifei, Zhu Xiangkun, Yan Bin, et al. Oxygenation of a Cryogenian ocean (Nanhua Basin, South China) revealed by pyrite Fe isotope compositions[J]. Earth and Planetary Science Letters, 2015, 429: 11−19. doi: 10.1016/j.jpgl.2015.07.021
    [41]
    Wei Wei, Wang Dan, Li Da, et al. The marine redox change and nitrogen cycle in the Early Cryogenian interglacial time: evidence from nitrogen isotopes and Mo contents of the basal Datangpo Formation, northeastern Guizhou, South China[J]. Journal of Earth Science, 2016, 27(2): 233−241. doi: 10.1007/s12583-015-0657-1
    [42]
    Xu Lingang, Frank A B, Lehmann B, et al. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity[J]. Scientific Reports, 2019, 9(1): 15056. doi: 10.1038/s41598-019-51495-0
    [43]
    Hohl S V, Jiang S Y, Viehmann S, et al. Trace metal and Cd isotope systematics of the basal Datangpo Formation, Yangtze Platform (South China) indicate restrained (bio) geochemical metal cycling in Cryogenian seawater[J]. Geosciences, 2020, 10(1): 36. doi: 10.3390/geosciences10010036
    [44]
    Ai Jiayi, Zhong Ningning, Zhang Tonggang, et al. Oceanic water chemistry evolution and its implications for post-glacial black shale formation: insights from the Cryogenian Datangpo Formation, South China[J]. Chemical Geology, 2021, 566: 120083. doi: 10.1016/j.chemgeo.2021.120083
    [45]
    刘莉萍, 吴文昌, 江祖州, 等. 扬子东南缘“湘潭式”锰矿的地球化学特征及成矿机制[J]. 地球化学, 2022, 51(6): 696−715.

    Liu Liping, Wu Wenchang, Jiang Zuzhou, et al. Genesis of Cryogenian Xiangtan-type manganese deposits in Hunan Province, China: constraints from geochemical evidence[J]. Geochimica, 2022, 51(6): 696−715.
    [46]
    齐靓, 余文超, 杜远生, 等. 黔东南华纪铁丝坳期-大塘坡期古气候的演变: 来自CIA的证据[J]. 地质科技情报, 2015, 34(6): 47−57.

    Qi Liang, Yu Wenchao, Du Yuansheng, et al. Paleoclimate evolution of the Cryogenian Tiesi’ao formation-Datangpo formation in eastern Guizhou Province: evidence from the chemical index of alteration[J]. Geological Science and Technology Information, 2015, 34(6): 47−57.
    [47]
    Wang Ping, Du Yuansheng, Yu Wenchao, et al. The chemical index of alteration (CIA) as a proxy for climate change during glacial-interglacial transitions in Earth history[J]. Earth-Science Reviews, 2020, 201: 103032. doi: 10.1016/j.earscirev.2019.103032
    [48]
    Le Heron D P, Busfield M E, Kettler C. Ice-rafted dropstones in “postglacial” Cryogenian cap carbonates[J]. Geology, 2021, 49(3): 263−267. doi: 10.1130/G48208.1
    [49]
    Calvert S E, Price N B. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments[J]. Earth and Planetary Science Letters, 1972, 16(2): 245−249. doi: 10.1016/0012-821X(72)90197-5
    [50]
    赵其渊. 海洋地球化学[M]. 北京: 地质出版社, 1989: 118−120.

    Zhao Qiyuan. Marine Geochemistry[M]. Beijing: Geological Publishing House, 1989: 118−120. (查阅网上资料, 未找到对应的英文翻译, 请确认)
    [51]
    Sasmaz A, Zagnitko V M, Sasmaz B. Major, trace and rare earth element (REE) geochemistry of the Oligocene stratiform manganese oxide-hydroxide deposits in the Nikopol, Ukraine[J]. Ore Geology Reviews, 2020, 126: 103772. doi: 10.1016/j.oregeorev.2020.103772
    [52]
    Van Cappellen P, Viollier E, Roychoudhury A, et al. Biogeochemical cycles of manganese and iron at the Oxic-anoxic transition of a stratified marine basin (orca basin, gulf of Mexico)[J]. Environmental Science & Technology, 1998, 32(19): 2931−2939.
    [53]
    Dekov V M, Maynard J B, Kamenov G D, et al. Origin of the Oligocene manganese deposit at Obrochishte (Bulgaria): insights from C, O, Fe, Sr, Nd, and Pb isotopes[J]. Ore Geology Reviews, 2020, 122: 103550. doi: 10.1016/j.oregeorev.2020.103550
    [54]
    Herndon E M, Havig J R, Singer D M, et al. Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta, 2018, 231: 50−63. doi: 10.1016/j.gca.2018.04.013
    [55]
    Wittkop C, Swanner E D, Grengs A, et al. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments[J]. Earth and Planetary Science Letters, 2020, 538: 116201. doi: 10.1016/j.jpgl.2020.116201
    [56]
    Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction[J]. Environmental Microbiology, 2012, 14(10): 2726−2740. doi: 10.1111/j.1462-2920.2012.02825.x
    [57]
    Egger M, Rasigraf O, Sapart C J, et al. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277−283.
    [58]
    Peng Xiaotong, Guo Zixiao, Chen Shun, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205: 1−13. doi: 10.1016/j.gca.2017.02.010
    [59]
    Sun Zhilei, Wu Nengyou, Cao Hong, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough[J]. Chemical Geology, 2019, 525: 190−209. doi: 10.1016/j.chemgeo.2019.07.025
    [60]
    Hein J R, Koski R A. Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges[J]. Geology, 1987, 15(8): 722−726. doi: 10.1130/0091-7613(1987)15<722:BMDOFC>2.0.CO;2
    [61]
    Liu Liping, Ryu B, Sun Zhilei, et al. Monitoring and research on environmental impacts related to marine natural gas hydrates: review and future perspective[J]. Journal of Natural Gas Science and Engineering, 2019, 65: 82−107. doi: 10.1016/j.jngse.2019.02.007
    [62]
    冯先翠. 中挪威海Nyegga麻坑区冷泉碳酸盐岩的研究[D]. 广州: 中国科学院广州地球化学研究所, 2015.

    Feng Xiancui. Study of Cold-seep carbonates from the Nyegga pockmark field, offshore mid-Norway[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2015.
    [63]
    Feng Dong, Chen Duofu, Qi Liang, et al. Petrographic and geochemical characterization of seep carbonate from Alaminos Canyon, Gulf of Mexico[J]. Chinese Science Bulletin, 2008, 53(11): 1716−1724. doi: 10.1007/s11434-008-0157-0
    [64]
    Liang Qianyong, Hu Yu, Feng Dong, et al. Authigenic carbonates from newly discovered active cold seeps on the northwestern slope of the South China Sea: constraints on fluid sources, formation environments, and seepage dynamics[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2017, 124: 31−41. doi: 10.1016/j.dsr.2017.04.015
    [65]
    Whiticar M J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane[J]. Chemical Geology, 1999, 161(1/3): 291−314.
    [66]
    Olivarez A M, Owen R M. The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans[J]. Chemical Geology, 1991, 92(4): 317−328. doi: 10.1016/0009-2541(91)90076-4
    [67]
    Sverjensky D A. Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1): 70−78. doi: 10.1016/0012-821X(84)90039-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article views (25) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return