Citation: | Yang Yixin,Zhang Fenfen,Ren Xu, et al. Historical Variation in Sources of Sedimentary Organic Carbon and Burial Fluxes in Mangrove Wetlands of Tieshangang Bay[J]. Haiyang Xuebao,2025, 47(x):1–11 |
[1] |
Mcleod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
|
[2] |
Nellemann C, Corcoran E, Duarte C M, et al. Blue Carbon: the Role of Healthy Oceans in Binding Carbon: A Rapid Response Assessment[M]. Spain: UNEP, 2009.
|
[3] |
章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641
Zhang Haibo, Luo Yongming, Liu Xinghua, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica: Terrae, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641
|
[4] |
Donato D C, Kauffman J B, Murdiyarso D, et al. Mangroves among the most carbon−rich forests in the tropics[J]. Nature Geoscience, 2011, 4(5): 293−297. doi: 10.1038/ngeo1123
|
[5] |
Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6: 195−219. doi: 10.1146/annurev-marine-010213-135020
|
[6] |
Bouillon S, Borges A V, Castañeda−Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
|
[7] |
Rosentreter J A, Maher D T, Erler D V, et al. Methane emissions partially offset “blue carbon” burial in mangroves[J]. Science Advances, 2018, 4(6): eaao4985. doi: 10.1126/sciadv.aao4985
|
[8] |
Duke N C, Meynecke J O, Dittmann S, et al. A world without mangroves?[J]. Science, 2007, 317(5834): 41−42.
|
[9] |
Grellier S, Janeau J L, Dang Hoai N, et al. Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam)[J]. Science of the Total Environment, 2017, 593−594: 654−663. doi: 10.1016/j.scitotenv.2017.03.204
|
[10] |
Sippo J Z, Sanders C J, Santos I R, et al. Coastal carbon cycle changes following mangrove loss[J]. Limnology and oceanography, 2020, 65(11): 2642−2656. doi: 10.1002/lno.11476
|
[11] |
Li M S, Lee S Y. Mangroves of China: a brief review[J]. Forest Ecology and Management, 1997, 96(3): 241−259. doi: 10.1016/S0378-1127(97)00054-6
|
[12] |
Gonneea M E, Paytan A, Herrera−Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years[J]. Estuarine, Coastal and Shelf Science, 2004, 61(2): 211−227. doi: 10.1016/j.ecss.2004.04.015
|
[13] |
李小维, 黄子眉, 陈剑锋, 等. 基于VSD模型的铁山港湾红树林生态系统脆弱性初步评价[J]. 热带海洋学报, 2018, 37(2): 47−54.
Li Xiaowei, Huang Zimei, Chen Jianfeng, et al. Preliminary assessment of Tieshangang Bay mangrove ecosystem vulnerability based on VSD model[J]. Journal of Tropical Oceanography, 2018, 37(2): 47−54.
|
[14] |
莫权芳, 钟仕全. 基于Landsat数据的铁山港区红树林变迁及其驱动力分析研究[J]. 科学技术与工程, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002
Mo Quanfang, Zhong Shiquan. Analysis of mangrove changes and its driving forces based on landsat data in Tieshangang[J]. Science Technology and Engineering, 2014, 14(23): 8−14. doi: 10.3969/j.issn.1671-1815.2014.23.002
|
[15] |
韦蔓新, 范航清, 何本茂, 等. 广西铁山港红树林区水体的营养水平与结构特征[J]. 热带海洋学报, 2013, 32(4): 84−91. doi: 10.3969/j.issn.1009-5470.2013.04.013
Wei Manxin, Fan Hangqing, He Benmao, et al. Nutritional level and component characteristic of water in mangrove area of Tieshan Bay[J]. Journal of Tropical Oceanography, 2013, 32(4): 84−91. doi: 10.3969/j.issn.1009-5470.2013.04.013
|
[16] |
王鑫. 不同典型体系沉积物中陆源有机质的分布和活性铁的潜在碳汇效应[D]. 上海: 华东师范大学, 2021.
Wang Xin. Distribution of terrestrial organic matter and potential carbon sink effect of reactive iron in sediments of different typical systems[D]. Shanghai: East China Normal University, 2021.
|
[17] |
Sanchez−Cabeza J A, Ruiz−Fernández A C. 210Pb sediment radiochronology: an integrated formulation and classification of dating models[J]. Geochimica et Cosmochimica Acta, 2012, 82: 183−200. doi: 10.1016/j.gca.2010.12.024
|
[18] |
Li Dongyi, Xu Yonghang, Li Yunhai, et al. Sedimentary records of human activity and natural environmental evolution in sensitive ecosystems: a case study of a coral nature reserve in Dongshan Bay and a mangrove forest nature reserve in Zhangjiang River estuary, Southeast China[J]. Organic Geochemistry, 2018, 121: 22−35. doi: 10.1016/j.orggeochem.2018.02.011
|
[19] |
Peterson B J, Howarth R W, Garritt R H. Multiple stable isotopes used to trace the flow of organic matter in estuarine food webs[J]. Science, 1985, 227(4692): 1361−1363. doi: 10.1126/science.227.4692.1361
|
[20] |
Cheng Xiaoli, Luo Yiqi, Chen Jiquan, et al. Short−term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant−dominated tidal wetlands on a growing estuarine Island[J]. Soil Biology and Biochemistry, 2006, 38(12): 3380−3386. doi: 10.1016/j.soilbio.2006.05.016
|
[21] |
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
|
[22] |
Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7/8): 319−361.
|
[23] |
Hu Jianfang, Peng Pingan, Jia Guodong, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98(2/4): 274−285.
|
[24] |
Loneragan N R, Bunn S E, Kellaway D M. Are mangroves and seagrasses sources of organic carbon for penaeid prawns in a tropical Australian estuary? A multiple stable−isotope study[J]. Marine Biology, 1997, 130(2): 289−300. doi: 10.1007/s002270050248
|
[25] |
Phillips D L, Gregg J W. Source partitioning using stable isotopes: coping with too many sources[J]. Oecologia, 2003, 136(2): 261−269. doi: 10.1007/s00442-003-1218-3
|
[26] |
He Biyan, Dai Minhan, Huang W, et al. Sources and accumulation of organic carbon in the Pearl River Estuary surface sediment as indicated by elemental, stable carbon isotopic, and carbohydrate compositions[J]. Biogeosciences, 2010, 7(10): 3343−3362. doi: 10.5194/bg-7-3343-2010
|
[27] |
Xia Peng, Meng Xianwei, Li Zhen, et al. Mangrove development and its response to environmental change in Yingluo Bay (SW China) during the last 150 years: stable carbon isotopes and mangrove pollen[J]. Organic Geochemistry, 2015, 85: 32−41. doi: 10.1016/j.orggeochem.2015.04.003
|
[28] |
Yu Fengling, Zong Yongqiang, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618−630. doi: 10.1016/j.ecss.2010.02.018
|
[29] |
黄龙, 张志珣, 耿威, 等. 闽浙沿岸东部海域表层沉积物粒度特征及其沉积环境[J]. 海洋地质与第四纪地质, 2014, 34(6): 161−169.
Huang Long, Zhang Zhixun, Geng Wei, et al. Grain size of surface sediments in the eastern Min−Zhe coast: an indicator of sedimentary environments[J]. Marine Geology & Quaternary Geology, 2014, 34(6): 161−169.
|
[30] |
Fan Hangqing. Mangrove resources, human disturbance and rehabilitation action in China[J]. Chinese Biodiversity, 1995, 3(Sl): 49−54.
|
[31] |
Walling D E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges[M]. Paris: UNESCO, 2009.
|
[32] |
Walsh J P, Nittrouer C A. Mangrove−bank sedimentation in a mesotidal environment with large sediment supply, Gulf of Papua[J]. Marine Geology, 2004, 208(2/4): 225−248.
|
[33] |
Gupta H, Kao S J, Dai Minhan. The role of mega dams in reducing sediment fluxes: a case study of large Asian rivers[J]. Journal of Hydrology, 2012, 464−465: 447−458. doi: 10.1016/j.jhydrol.2012.07.038
|
[34] |
Dethier E N, Renshaw C E, Magilligan F J. Rapid changes to global river suspended sediment flux by humans[J]. Science, 2022, 376(6600): 1447−1452. doi: 10.1126/science.abn7980
|
[35] |
Martín−Antón M, Negro V, Del Campo J M, et al. Review of coastal land reclamation situation in the world[J]. Journal of Coastal Research, 2016, 75(sp1): 667−671. doi: 10.2112/SI75-133.1
|
[36] |
Tian Bo, Wu Wenting, Yang Zhaoqing, et al. Drivers, trends, and potential impacts of long−term coastal reclamation in China from 1985 to 2010[J]. Estuarine, Coastal and Shelf Science, 2016, 170: 83−90. doi: 10.1016/j.ecss.2016.01.006
|
[37] |
Hackney C R, Darby S E, Parsons D R, et al. River bank instability from unsustainable sand mining in the lower Mekong River[J]. Nature Sustainability, 2020, 3(3): 217−225. doi: 10.1038/s41893-019-0455-3
|
[38] |
石敏, 李慧颖, 贾明明. 基于GEE云平台与Landsat数据的山口自然保护区红树林时空变化分析[J]. 自然资源遥感, 2023, 35(2): 61−69.
Shi Min, Li Huiying, Jia Mingming. Spatio−temporal variations in mangrove forests in the Shankou Mangrove Nature Reserve based on the GEE cloud platform and Landsat data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 61−69.
|
[39] |
Jia Mingming, Wang Zongming, Zhang Yuanzhi, et al. Landsat−based estimation of mangrove forest loss and restoration in Guangxi province, China, influenced by human and natural factors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(1): 311−323. doi: 10.1109/JSTARS.2014.2333527
|
[40] |
贾明明, 王宗明, 毛德华, 等. 面向可持续发展目标的中国红树林近50年变化分析[J]. 科学通报, 2021, 66(30): 3886−3901. doi: 10.1360/TB-2020-1412
Jia Mingming, Wang Zongming, Mao Dehua, et al. Spatial−temporal changes of China’s mangrove forests over the past 50 years: an analysis towards the Sustainable Development Goals (SDGs)[J]. Chinese Science Bulletin, 2021, 66(30): 3886−3901. doi: 10.1360/TB-2020-1412
|
[41] |
周相君. 1973−2013年广西大陆海岸线遥感变迁分析[D]. 青岛: 国家海洋局第一海洋研究所, 2014.
Zhou Xiangjun. Shoreline change analysis of Guangxi mainland based on remote sensing from 1973 to 2013[D]. Qingdao: The First Institute of Oceanography, Soa, 2014.
|
[42] |
Kelleway J J, Saintilan N, Macreadie P I, et al. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes[J]. Ecosystems, 2016, 19(5): 865−880. doi: 10.1007/s10021-016-9972-3
|
[43] |
Santín C, González−Pérez M, Otero X L, et al. Characterization of humic substances in salt marsh soils under sea rush (Juncus maritimus)[J]. Estuarine, Coastal and Shelf Science, 2008, 79(3): 541−548. doi: 10.1016/j.ecss.2008.05.007
|
[44] |
Russell S K, Gillanders B M, Detmar S, et al. Determining environmental drivers of fine−scale variability in blue carbon soil stocks[J]. Estuaries and Coasts, 2024, 47(1): 48−59. doi: 10.1007/s12237-023-01260-4
|
[45] |
梁文, 李智, 范航清, 等. 防城港湾红树林表层沉积物粒度分形特征及与环境因子的相关性[J]. 应用海洋学学报, 2013, 32(2): 184−192. doi: 10.3969/J.ISSN.2095-4972.2013.02.006
Liang Wen, Li Zhi, Fan Hangqing, et al. Fractal characteristics and correlation with environmental factor on the surface sediments in mangrove areas of Fangchenggang Bay[J]. Journal of Applied Oceanography, 2013, 32(2): 184−192. doi: 10.3969/J.ISSN.2095-4972.2013.02.006
|
[46] |
Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: a changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences, 2011, 108(49): 19473−19481. doi: 10.1073/pnas.1017982108
|
[47] |
Lin W J, Lin C W, Wu H H, et al. Mangrove carbon budgets suggest the estimation of net production and carbon burial by quantifying litterfall[J]. Catena, 2023, 232: 107421. doi: 10.1016/j.catena.2023.107421
|
[48] |
Alongi D M. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change[J]. Estuarine, Coastal and Shelf Science, 2008, 76(1): 1−13. doi: 10.1016/j.ecss.2007.08.024
|
[49] |
褚冠宇. 基于风暴潮记录的广西红树林沉积与碳埋藏特征及脆弱性研究[D]. 南宁: 广西大学, 2021.
Chu Guanyu. Study on sedimentation and carbon burial characteristics and vulnerability of mangroves based on storm surge history in Guangxi[D]. Nanning: Guangxi University, 2021.
|
[50] |
Gacia E, Duarte C M. Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension[J]. Estuarine, Coastal and Shelf Science, 2001, 52(4): 505−514. doi: 10.1006/ecss.2000.0753
|
[51] |
Chen Min, Guo Laodong, Ma Qiang, et al. Zonal patterns of δ13C, δ15N and 210Po in the tropical and subtropical North Pacific[J]. Geophysical Research Letters, 2006, 33(4): L04609.
|
[52] |
Alongi D M. The impact of climate change on mangrove forests[J]. Current Climate Change Reports, 2015, 1(1): 30−39. doi: 10.1007/s40641-015-0002-x
|
[53] |
Feller I C, Whigham D F, Mckee K L, et al. Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida[J]. Oecologia, 2003, 134(3): 405−414. doi: 10.1007/s00442-002-1117-z
|
[54] |
Ouyang Xiaoguang, Lee S Y, Connolly R M. The role of root decomposition in global mangrove and saltmarsh carbon budgets[J]. Earth−Science Reviews, 2017, 166: 53−63. doi: 10.1016/j.earscirev.2017.01.004
|
[55] |
孙江. 东寨港红树林有机碳来源、埋藏及福清宁德核电站邻近海域的环境效应[D]. 汕头: 汕头大学, 2022.
Sun Jiang. Sources and burial of organic carbon in the Dongzhai port mangrove and environmental effects in the sea area adjacent to Fuqing and Ningde nuclear power plants[D]. Shantou: Shantou University, 2022.
|
[56] |
Kusumaningtyas M A, Hutahaean A A, Fischer H W, et al. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 310−323. doi: 10.1016/j.ecss.2018.12.007
|
[57] |
Kauffman J B, Adame M F, Arifanti V B, et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients[J]. Ecological Monographs, 2020, 90(2): e01405. doi: 10.1002/ecm.1405
|
[58] |
Castañeda−Moya E, Twilley R R, Rivera−Monroy V H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA[J]. Forest Ecology and Management, 2013, 307: 226−241. doi: 10.1016/j.foreco.2013.07.011
|
[59] |
Arnaud M, Krause S, Norby R J, et al. Global mangrove root production, its controls and roles in the blue carbon budget of mangroves[J]. Global Change Biology, 2023, 29(12): 3256−3270. doi: 10.1111/gcb.16701
|
[60] |
胡凯杰, 王蔚, 钱威, 等. 中国红树林植被和土壤碳积累速率及其影响因素[J]. 应用生态学报, 2025, 36(1): 121−131.
Hu Kaijie, Wang Wei, Qian Wei, et al. Carbon accumulation rates of vegetation and soil in mangroves of China and their influencing factors[J]. Chinese Journal of Applied Ecology, 2025, 36(1): 121−131.
|
[61] |
覃国铭, 张靖凡, 周金戈, 等. 广东省红树林土壤碳储量及固碳潜力研究[J]. 热带地理, 2023, 43(1): 23−30.
Qin Guoming, Zhang Jingfan, Zhou Jinge, et al. Soil carbon stock and potential carbon storage in the mangrove forests of Guangdong[J]. Tropical Geography, 2023, 43(1): 23−30.
|
[62] |
Jiang Zhongmao, Sanders C J, Xin Kun, et al. Increasing carbon and nutrient burial rates in mangroves coincided with coastal aquaculture development and water eutrophication in NE Hainan, China[J]. Marine Pollution Bulletin, 2024, 199: 115934. doi: 10.1016/j.marpolbul.2023.115934
|
[63] |
徐慧鹏. 广西典型红树林沉积与碳埋藏特征及其扩张历史研究[D]. 南宁: 广西大学, 2020.
Xu Huipeng. Study on sedimentary and carbon burial characteristics and expansion history of typical mangroves in Guangxi[D]. Nanning: Guangxi University, 2020.
|
[64] |
王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 2016, 31(10): 1218−1225.
Wang Xiujun, Zhang Haibo, Han Guangxuan. Carbon cycle and "blue carbon" potential in China's coastal zone[J]. Bulletin of Chinese Academy of Sciences, 2016, 31(10): 1218−1225.
|
[65] |
Laffoley D, Grimsditch G D. The Management of Natural Coastal Carbon Sinks[M]. Gland: IUCN, 2009.
|