Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Wang Fangqi,Tao Changfei,Lin Xubo, et al. Statistical characteristics of seabed sound velocity in the Jinzhou Bay based on high resolution sub-bottom profile data[J]. Haiyang Xuebao,2020, 42(11):112–122 doi: 10.3969/j.issn.0253-4193.2020.11.011
Citation: Wang Fangqi,Tao Changfei,Lin Xubo, et al. Statistical characteristics of seabed sound velocity in the Jinzhou Bay based on high resolution sub-bottom profile data[J]. Haiyang Xuebao,2020, 42(11):112–122 doi: 10.3969/j.issn.0253-4193.2020.11.011

Statistical characteristics of seabed sound velocity in the Jinzhou Bay based on high resolution sub-bottom profile data

doi: 10.3969/j.issn.0253-4193.2020.11.011
  • Received Date: 2019-09-13
  • Rev Recd Date: 2020-03-07
  • Available Online: 2020-11-27
  • Publish Date: 2020-11-25
  • The sound velocity of marine sedimentary sequence is an important parameter. Finding out the changing rule of the seabed sound velocity is of extremely important significance. On the basis of distortion correction, by comparatively analyzing of high resolution sub-bottom profile data and borehole data, the accurate inversions of sound velocity in Holocene and above-bedrock sedimentary sequence are achieved in the Jinzhou Bay, Bohai Sea, China. Then, the characteristics and changing rules of seabed sound velocity in the study area are analyzed and discussed by statistical method. The 95% confidence interval of sound velocity of Holocene sequence is 1 449.60 m/s to 1 655.72 m/s, and the average is 1 560.34 m/s. The 95% confidence interval of sound velocity of above-bedrock sequence is 1 657.96 m/s to 1 970.80 m/s, and the average is 1 765.63 m/s. There is a significant positive linear correlation between the sound velocity of the sedimentary sequence and the burial depth in the study area, and the gradient of sound velocity is 4.18 s−1.
  • loading
  • [1]
    Hamilton E L. Geoacoustic models of the sea floor[M]//Hampton L. Physics of Sound in Marine Sediments. Boston, MA: Springer, 1974: 181−221.
    [2]
    Hamilton E L. Geoacoustic modeling of the sea floor[J]. The Journal of the Acoustical Society of America, 1980, 68(5): 1313−1340. doi: 10.1121/1.385100
    [3]
    王方旗. 海底沉积物声速研究的意义、方法及展望[J]. 海洋技术学报, 2016, 35(6): 96−104.

    Wang Fangqi. Significance, methods and prospect of the research on sound velocity in seabed sediments[J]. Journal of Ocean Technology, 2016, 35(6): 96−104.
    [4]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168−178. doi: 10.1121/1.1908239
    [5]
    Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179−191. doi: 10.1121/1.1908241
    [6]
    Biot M A. Generalized theory of acoustic propagation in porous dissipative media[J]. The Journal of the Acoustical Society of America, 1962, 34(9A): 1254−1264. doi: 10.1121/1.1918315
    [7]
    邹大鹏, 吴百海, 卢博. 海底沉积物声速经验方程的分析和研究[J]. 海洋学报, 2007, 29(4): 43−50.

    Zou Dapeng, Wu Baihai, Lu Bo. Analysis and study on the sound velocity empirical equations of seafloor sediments[J]. Haiyang Xuebao, 2007, 29(4): 43−50.
    [8]
    邹大鹏. 海底沉积物压缩波声速比与物理特性的关系[J]. 声学学报, 2018, 43(1): 41−51.

    Zou Dapeng. Relationship between the sound speed ratio of the compressional wave and the physical characteristics of seafloor sediments[J]. Acta Acustica, 2018, 43(1): 41−51.
    [9]
    龙建军, 李赶先. 海底沉积物声速与物理性质的理论关系[J]. 声学学报, 2015, 40(3): 462−468.

    Long Jianjun, Li Ganxian. Theoretical relations between sound velocity and physical-mechanical properties for seafloor sediments[J]. Acta Acustica, 2015, 40(3): 462−468.
    [10]
    Hamilton E L, Shumway G, Menard H W, et al. Acoustic and other physical properties of shallow-water sediments off San Diego[J]. The Journal of the Acoustical Society of America, 1955, 28(1): 1007.
    [11]
    Hamilton E L. Low sound velocities in high-porosity sediments[J]. The Journal of the Acoustical Society of America, 1956, 28(1): 16−19. doi: 10.1121/1.1908208
    [12]
    Stokes T L, Dunn D A. Acoustic and physical property correlation of marine sediments from the texas-louisiana continental shelf[C]//Oceans 2001. MTS/IEEE Conference and Exhibition, 2001: 2624−2633.
    [13]
    梁元博, 卢博. 海底沉积物力学性质影响声速的物理机制[J]. 海洋学报, 1985, 7(1): 111−119.

    Liang Yuanbo, Lu Bo. The physical mechanism of the influence of the mechanical properties of seabed sediments on the sound velocity[J]. Haiyang Xuebao, 1985, 7(1): 111−119.
    [14]
    卢博, 梁元博. 海洋沉积物声速与其物理−力学参数的相关性[J]. 热带海洋, 1991, 10(3): 96−100.

    Lu Bo, Liang Yuanbo. Correlation of sound velocities and physico-mechanical parameters of marine sediments[J]. Journal of Tropical Oceanography, 1991, 10(3): 96−100.
    [15]
    卢博, 梁元博. 中国东南沿海海洋沉积物物理参数与声速的统计相关[J]. 中国科学: B辑, 1994, 24(5): 556−560.

    Lu Bo, Liang Yuanbo. Statistical correlation between sound velocity and physical parameters of marine sediments in southeast china coast[J]. Science in China: Series B, 1994, 24(5): 556−560.
    [16]
    卢博, 李传荣, 黄韶健, 等. 海底沉积物在应力-应变过程前后的微区变化特征[J]. 海洋学报, 2000, 22(4): 130−136.

    Lu Bo, Li Chuanrong, Huang Shaojian, et al. The Micro-area variance features of the seafloor sediment in stress-strain course back and forth[J]. Haiyang Xuebao, 2000, 22(4): 130−136.
    [17]
    王方旗, 亓发庆, 姚菁, 等. 基于时间平均的海底沉积物声速预测[J]. 海洋学报, 2012, 34(4): 84−90.

    Wang Fangqi, Qi Faqing, Yao Jing, et al. A study on forecasting sound velocity of sea-floor sediments based on the time-average method[J]. Haiyang Xuebao, 2012, 34(4): 84−90.
    [18]
    侯正瑜, 郭常升, 王景强. 南沙海域深水区表层沉积物声速与孔隙度相关关系[J]. 海洋科学, 2013, 37(7): 77−82.

    Hou Zhengyu, Guo Changsheng, Wang Jingqiang. Surface sediments acoustic velocity and porosity correlation in Nansha sea area abyssal region[J]. Marine Sciences, 2013, 37(7): 77−82.
    [19]
    李赶先, 龙建军. 南海南部海域岛礁区海底珊瑚砂声速影响因素的初步研究[J]. 海洋学报, 2014, 36(5): 152−160.

    Li Ganxian, Long Jianjun. A preliminary study of the sound velocity influence factors of submarine coral sand of islands sea area in southern South China Sea[J]. Haiyang Xuebao, 2014, 36(5): 152−160.
    [20]
    Gorgas T J, Wilkens R H, Fu S S, et al. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California[J]. Marine Geology, 2002, 182(1/2): 103−119.
    [21]
    Kim H S, Cho G C, Kwon T H. Effect of CO2 hydrate formation on seismic wave velocities of fine-grained sediments[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6): 1787−1799. doi: 10.1002/ggge.20102
    [22]
    Fu S S, Wilkens R H, Frazer L N. Acoustic lance: New in situ seafloor velocity profiles[J]. The Journal of the Acoustical Society of America, 1996, 99(1): 234−242. doi: 10.1121/1.414506
    [23]
    Best A I, Roberts J A, Somers M L. A new instrument for making in-situ acoustic and geotechnical measurements in seafloor sediments[J]. Underwater Technology, 1998, 23(3): 123−131. doi: 10.3723/175605498783259182
    [24]
    Richardson M D, Briggs K B, Bibee L D, et al. Overview of SAX99: Environmental considerations[J]. IEEE Journal of Oceanic Engineering, 2001, 26(1): 26−53. doi: 10.1109/48.917921
    [25]
    Buckingham M J, Richardson M D. On tone-burst measurements of sound speed and attenuation in sandy marine sediments[J]. IEEE Journal of Oceanic Engineering, 2002, 27(3): 429−453. doi: 10.1109/JOE.2002.1040929
    [26]
    Richardson M, Briggs K, Reed A, et al. Characterization of the environment during SAX04: Preliminary results[C]. Proceedings of the International Conference "Underwater Acoustic Measurements: Technologies and Results", 2005: 285−292.
    [27]
    Robb G B N, Best A I, Dix J K, et al. Measurement of the in situ compressional wave properties of marine sediments[J]. IEEE Journal of Oceanic Engineering, 2007, 32(2): 484−496. doi: 10.1109/JOE.2006.880430
    [28]
    Ojha M, Sain K. Velocity-porosity and velocity-density relationship for shallow sediments in the kerala-konkan basin of western indian margin[J]. Journal of the Geological Society of India, 2014, 84(2): 187−191. doi: 10.1007/s12594-014-0122-2
    [29]
    陶春辉, 金肖兵, 金翔龙, 等. 多频海底声学原位测试系统研制和试用[J]. 海洋学报, 2006, 28(2): 46−50.

    Tao Chunhui, Jin Xiaobing, Jin Xianglong, et al. Development of multi-frequency in-situ marine sediment geoacoustic measuring system[J]. Haiyang Xuebao, 2006, 28(2): 46−50.
    [30]
    郭常升, 窦玉坛, 谷明峰. 海底底质声学性质原位测量技术研究[J]. 海洋科学, 2007, 31(8): 6−10. doi: 10.3969/j.issn.1000-3096.2007.08.002

    Guo Changsheng, Dou Yutan, Gu Mingfeng. Development of in situ marine sediment acoustic measurement technique[J]. Marine Sciences, 2007, 31(8): 6−10. doi: 10.3969/j.issn.1000-3096.2007.08.002
    [31]
    阚光明, 刘保华, 韩国忠, 等. 原位测量技术在黄海沉积声学调查中的应用[J]. 海洋学报, 2010, 32(3): 88−94.

    Kan Guangming, Liu Baohua, Han Guozhong, et al. Application of in-situ measurement technology to the survey of seafloor sediment acoustic properties in the Huanghai Sea[J]. Haiyang Xuebao, 2010, 32(3): 88−94.
    [32]
    侯正瑜, 郭常升, 王景强, 等. 一种新型海底沉积物声学原位测量系统的研制及应用[J]. 地球物理学报, 2015, 58(6): 1976−1984. doi: 10.6038/cjg20150613

    Hou Zhengyu, Guo Changsheng, Wang Jingqiang, et al. Development and application of a new type in-situ acoustic measurement system of seafloor sediment[J]. Chinese Journal of Geophysics, 2015, 58(6): 1976−1984. doi: 10.6038/cjg20150613
    [33]
    Bryan G M. Sonobuoy Measurements in Thin Layers, Physics of Sound in Marine Sediments[M]. New York: Plenum Press, 1974: 119−130.
    [34]
    张叔英. 海底任意倾斜层的声速测量 (T2X2法的分析)[J]. 声学学报, 1989, 14(3): 178−189.

    Zhang Shuying. Acoustic velocity measurements of arbitrarily dipped sediment layers (the T2X2 approach) [J]. Acta Acustica, 1989, 14(3): 178−189.
    [35]
    张叔英. 海底薄地层和硬地层声速测量方法的研究 (射线参数法和折射法分析)[J]. 声学学报, 1991, 16(3): 187−198.

    Zhang Shuying. A study of measuring acoustic velocities of thin and hard sea-bed layers[J]. Acta Acustica, 1991, 16(3): 187−198.
    [36]
    段永侯. 渤海海岸带变迁及其环境地质效应[J]. 水文地质与工程地质, 2000, 27(3): 1−5.

    Duan Yonghou. Coastline changes of Bohai Sea and their environmental-geological effect[J]. Hydrogeology and Engineering Geology, 2000, 27(3): 1−5.
    [37]
    宋召军, 张志珣, 黄海军. 南黄海西部海域高分辨率声学地层及其沉积环境[J]. 海洋地质与第四纪地质, 2005, 25(1): 33−40.

    Song Zhaojun, Zhang Zhixun, Huang Haijun. Characteristics and depositional setting of the high resolution shallow seismic profile in the South Yellow Sea[J]. Marine Geology & Quaternary Geology, 2005, 25(1): 33−40.
    [38]
    王方旗, 胡光海, 吴永亭, 等. 渤海金州湾海域声学浅地层剖面及其解释[J]. 海洋科学进展, 2013, 31(1): 128−137. doi: 10.3969/j.issn.1671-6647.2013.01.014

    Wang Fangqi, Hu Guanghai, Wu Yongting, et al. Acoustic subbottom profile and their interpretations in the Jinzhou Bay of the Bohai Sea[J]. Advances in Marine Science, 2013, 31(1): 128−137. doi: 10.3969/j.issn.1671-6647.2013.01.014
    [39]
    Hamilton E L. Sound velocity gradients in marine sediments[J]. The Journal of the Acoustical Society of America, 1979, 65(4): 909−922. doi: 10.1121/1.382594
    [40]
    卢博. 海水—沉积物声速结构模式[J]. 海洋通报, 1995, 14(2): 42−47.

    Lu Bo. Model of sound velocity structure in seawater-sediments[J]. Marine Science Bulletin, 1995, 14(2): 42−47.
    [41]
    Brandes H G, Silva A J, Walter D J. Geo-acoustic characterization of calcareous seabed in the Florida Keys[J]. Marine Geology, 2002, 182(1/2): 77−102.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(3)

    Article views (269) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return