Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Zeng Chunhua,Zhu Shibing,Li Zhiqiang, et al. Response of the Qing’an Bay beach in Xuwen to Typhoon Bebinca based on high frequency observation data[J]. Haiyang Xuebao,2020, 42(11):100–111 doi: 10.3969/j.issn.0253-4193.2020.11.010
Citation: Zeng Chunhua,Zhu Shibing,Li Zhiqiang, et al. Response of the Qing’an Bay beach in Xuwen to Typhoon Bebinca based on high frequency observation data[J]. Haiyang Xuebao,2020, 42(11):100–111 doi: 10.3969/j.issn.0253-4193.2020.11.010

Response of the Qing’an Bay beach in Xuwen to Typhoon Bebinca based on high frequency observation data

doi: 10.3969/j.issn.0253-4193.2020.11.010
  • Received Date: 2019-09-05
  • Rev Recd Date: 2019-11-07
  • Available Online: 2020-12-09
  • Publish Date: 2020-11-25
  • Tropical cyclone is one of the most active dynamic factors for beach evolution. However, there are few field observations of beach during storms due to terrible working conditions. In this paper, 6 and a half days of high-frequency observation during the Typhoon Bebinca was conducted at the Qing’an Bay beach. The observation data included full-time hydrodynamics and 164 groups hourly variation of beach surface elevation. Three main analysis results were identified: (1) Controlled by the spatial distribution of Hainan Island-Leizhou Peninsula and the changeable track of the Typhoon Bebinca, the storm surge was maintained between 0.38−0.5 m, the wave height first decreased from 0.78 m to 0.43 m and then increased to 0.56 m. (2) The beach berm was eroded and a sand bar was formed under the water. There were three response stages of the beach berm during the Typhoon Bebinca, eroded downward fast, eroded slowly to the maximum, and recovered by oscillating deposition. The recovery amplitude could reach one quarter of the maximum erosion depth during the Typhoon Bebinca. (3) The response process of the Qing'an Bay beach to Typhoon Bebinca was mainly composed of four modes. The first mode reflected the erosion process of the spring tidal beach berm and the formation of the sand bar. The second mode indicated the erosion of the storm beach berm, the compensatory recovery of the spring tidal beach berm and the growth of the sand bar. The third mode revealed the bilateral transport process of sediment caused by the uprush and undertow at the secondary breaking position of waves. The fourth mode showed that the strong waves suspended the sediment in the surf zone, and some of the suspended sediment which was transported to the deep-water area by littoral current and offshore current may lost permanently.
  • loading
  • [1]
    The Nearshore Processes Community. The future of nearshore processes research[J]. Shore & Beach, 2015, 83(1): 13−38.
    [2]
    Holman R A, Haller M C, Lippmann T C, et al. Advances in nearshore processes research: four decades of process[J]. Shore & Beach, 2015, 83(1): 39−52.
    [3]
    Basco D. Erosion of beaches on St. Martin Island during hurricanes Luis and Marilyn[J]. Shore and Beach, 1996, 64(4): 15−20.
    [4]
    Stockdon H F, Sallenger A H, Holman R A, et al. A simple model for the spatially-variable coastal response to hurricanes[J]. Marine Geology, 2007, 238: 1−20. doi: 10.1016/j.margeo.2006.11.004
    [5]
    Anthony E J. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea[J]. Geomorphology, 2013, 199(5): 8−21.
    [6]
    Costas S, Alejo I, Vila-Concejo A, et al. Persistence of storm-induced morphology on a modal low-energy beach: A case study from NW-Iberian Peninsula[J]. Marine Geology, 2005, 224(1/4): 43−56.
    [7]
    Otvos E G. Beach aggradation following hurricane landfall: impact comparisons from two contrasting hurricanes, northern Gulf of Mexico[J]. Journal of Coastal Research, 2004, 20: 326−339.
    [8]
    Sedrati M, Anthony E J. Storm-generated morphological change and longshore sand transport in the intertidal zone of a multi-barred macrotidal beach[J]. Marine Geology, 2007, 244(1/4): 209−229.
    [9]
    童宵岭, 时连强, 夏小明, 等. 1211号台风对浙江象山皇城海滩剖面的影响分析[J]. 海洋工程, 2014, 32(1): 84−90. doi: 10.3969/j.issn.1005-9865.2014.01.011

    Tong Xiaoling, Shi Lianqiang, Xia Xiaoming, et al. Response of sedimentary and geomorphic characteristics to 1211 typhoon on Zhejiang Huangcheng beach[J]. The Ocean Engineering, 2014, 32(1): 84−90. doi: 10.3969/j.issn.1005-9865.2014.01.011
    [10]
    Morton R A, Gibeaut J C, Paine J G. Meso-scale transfer of sand during and after storms: implications for prediction of shoreline movement[J]. Marine Geology, 1995, 126(1/4): 161−179.
    [11]
    Houser C, Hamilton S. Sensitivity of post-hurricane beach and dune recovery to event frequency[J]. Earth Surface Processes and Landforms, 2009, 34(5): 613−628. doi: 10.1002/esp.1730
    [12]
    Dissanayake P, Brown J, Karunarathna H. Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK[J]. Natural Hazards and Earth System Sciences, 2015, 15(7): 1533−1543. doi: 10.5194/nhess-15-1533-2015
    [13]
    Thuan D H, Binh L T, Viet N T, et al. Typhoon impact and recovery from continuous video monitoring: a case study from Nha Trang Beach, Vietnam[J]. Journal of Coastal Research, 2016, 75: 263−267. doi: 10.2112/SI75-053.1
    [14]
    Ding D, Yang J C, Li G X, et al. A geomorphological response of beaches to Typhoon Meari in the eastern Shandong Peninsula in China[J]. Acta Oceanologica Sinica, 2015, 34(9): 126−135. doi: 10.1007/s13131-015-0644-5
    [15]
    Sallebger Jr A H, Stockdon H F, Fauver L, et al. Hurricanes 2004: an overview of their characteristics and coastal change[J]. Estuaries and Coasts, 2006, 29(6A): 880−888.
    [16]
    李谷祺, 彭俊, 蔡锋, 等. 沙坝−泻湖岸型砂质海滩地貌对台风的响应特征[J]. 海洋地质动态, 2007, 23(8): 14−18. doi: 10.3969/j.issn.1009-2722.2007.08.004

    Li Guqi, Peng Jun, Cai Feng, et al. Response characteristics of sand Bar-Lagoon Beach Landform to typhoon[J]. Marine Geology Letters, 2007, 23(8): 14−18. doi: 10.3969/j.issn.1009-2722.2007.08.004
    [17]
    邵超, 戚洪帅, 蔡锋, 等. 海滩−珊瑚礁系统风暴响应特征研究——以1409号台风“威马逊”对清澜港海岸影响为例[J]. 海洋学报, 2016, 38(2): 121−130.

    Shao Chao, Qi Hongshuai, Cai Feng, et al. Study on storm-effects on beach-coral reef system—Taking the response of Qinglangang Coast on No. 1409 Typhoon Rammasun as an example[J]. Haiyang Xuebao, 2016, 38(2): 121−130.
    [18]
    龚昊, 陈沈良, 钟小菁, 等. 海南岛东北部海滩侵蚀与恢复对连续台风的复杂响应[J]. 海洋学报, 2017, 39(5): 68−77.

    Gong Hao, Chen Shenliang, Zhong Xiaojing, et al. Complicated responses of beach erosion and restoration to consecutive typhoons along northeastern Hainan Island, China[J]. Haiyang Xuebao, 2017, 39(5): 68−77.
    [19]
    朱士兵, 李志强. 雷州半岛南部海滩对1720号台风(卡努)的响应研究[J]. 热带海洋学报, 2019, 38(1): 96−103.

    Zhu Shibing, Li Zhiqiang. Study on beach response to Typhoon Khanun (No. 1720) along southern Leizhou Peninsula[J]. Journal of Tropical Oceanography, 2019, 38(1): 96−103.
    [20]
    Morton R A, Sallenger Jr A H. Morphological impacts of extreme storms on sandy beaches and barriers[J]. Journal of Coastal Research, 2003, 19(3): 560−573.
    [21]
    Sallenger Jr A H. Storm impact scale for barrier island[J]. Journal of Coastal Research, 2000, 16(3): 890−895.
    [22]
    黎树式, 戴志军, 葛振鹏, 等. 强潮海滩响应威马逊台风作用动力沉积过程研究——以北海银滩为例[J]. 海洋工程, 2017, 35(3): 89−98.

    Li Shushi, Dai Zhijun, Ge Zhenpeng, et al. Sediment dynamic processes of macro-tidal beach in response to Typhoon Rammasun action—A case study of Yintan, Beihai[J]. The Ocean Engineering, 2017, 35(3): 89−98.
    [23]
    Ge Z, Dai Z, Pang W, et al. LIDAR-based detection of the post-typhoon recovery of a meso-macro-tidal beach in the Beibu Gulf, China[J]. Marine Geology, 2017, 391: 127−143. doi: 10.1016/j.margeo.2017.08.008
    [24]
    陈子燊, 王扬圣, 黄德全, 等. 台风影响下海滩前滨剖面时间变化差异性分析[J]. 热带海洋学报, 2009, 28(6): 1−6. doi: 10.3969/j.issn.1009-5470.2009.06.001

    Chen Zishen, Wang Yangsheng, Huang Dequan, et al. Analysis on temporal change of foreshore profile under tropical storms[J]. Journal of Tropical Oceanography, 2009, 28(6): 1−6. doi: 10.3969/j.issn.1009-5470.2009.06.001
    [25]
    于吉涛, 丁圆婷, 程璜鑫, 等. 0709号台风影响下粤东后江湾海滩地形动力过程研究[J]. 海洋学报, 2015, 37(5): 76−86.

    Yu Jitao, Ding Yuanting, Cheng Huangxin, et al. Study on beach morphodynamic processes of Houjiang Wan in east Guangdong under the influence of the typhoon (No. 0709)[J]. Haiyang Xuebao, 2015, 37(5): 76−86.
    [26]
    包砺彦. 雷州半岛南部青安湾海滩的沉积特征和地形发育[J]. 热带海洋, 1989, 8(2): 75−83.

    Bao Liyan. Sedimentary characteristics and landform developments of Qingan Bay beach in southern Leizhou Peninsula[J]. Journal of Tropical Oceanography, 1989, 8(2): 75−83.
    [27]
    Masselink G, Hegge B J, Pattiarachi C B. Beach cusp morphodynamics[J]. Earth Surface Processes and Landforms, 1997, 22(12): 1139−1155. doi: 10.1002/(SICI)1096-9837(199712)22:12<1139::AID-ESP766>3.0.CO;2-1
    [28]
    Sallenger Jr A H, Richmond B M. High-frequency sediment-level oscillation in the swash zone[J]. Marine Geology, 1984, 60: 155−164. doi: 10.1016/0025-3227(84)90148-8
    [29]
    Li Z Q. Relationship between high-frequency sediment-level oscillations in the swash zone and inner surf zone wave characteristics under calm wave conditions[J]. Open Geosciences, 2016, 8: 787−798.
    [30]
    戚洪帅, 蔡锋, 雷刚, 等. 华南海滩风暴响应特征研究[J]. 自然科学进展, 2009, 19(9): 975−985. doi: 10.3321/j.issn:1002-008X.2009.09.011

    Qi Hongshuai, Cai Feng, Lei Gang, et al. Study on storm response characteristics of South China Beach[J]. Progress in Natural Science, 2009, 19(9): 975−985. doi: 10.3321/j.issn:1002-008X.2009.09.011
    [31]
    蔡锋, 苏贤泽, 夏东兴, 等. 热带气旋前进方向两侧海滩风暴效应差异研究: 以海滩对0307号台风“伊布都”的响应为例[J]. 海洋科学进展, 2004, 22(4): 436−445. doi: 10.3969/j.issn.1671-6647.2004.04.005

    Cai Feng, Su Xianze, Xia Dongxing, et al. Study on the difference between storm effects of beaches on two sides of the tropical cyclone track—taking the responses of beaches to NO. 0307 Typhoon Imbudo as an example[J]. Advances in Marine Science, 2004, 22(4): 436−445. doi: 10.3969/j.issn.1671-6647.2004.04.005
    [32]
    万弘超, 李训强, 窦红刚. 海口港风暴潮特征分析[J]. 海洋预报, 2009, 26(2): 69−77. doi: 10.3969/j.issn.1003-0239.2009.02.009

    Wan Hongchao, Li Xunqiang, Dou Honggang. Analysis of storm surge characteristics in Haikou Port[J]. Marine Forecasts, 2009, 26(2): 69−77. doi: 10.3969/j.issn.1003-0239.2009.02.009
    [33]
    马经广, 杨武志. 台风“海鸥”与“威马逊”风暴增水的差异分析[J]. 广东水利水电, 2015(3): 20−24.

    Ma Jingguang, Yang Wuzhi. Analysis on the difference of storm surge between Typhoon Kalmaegi and Rammasun[J]. Guangdong Water Resources and Hydropower, 2015(3): 20−24.
    [34]
    杨玄阁. 琼州海峡台风风暴潮诊断分析[D]. 广州: 华南理工大学, 2017.

    Yang Xuange. Diagnostic analysis of strom surges in the Qiongzhou Strait[D]. Guangzhou: South China University of Technology, 2017.
    [35]
    黄山. 琼州海峡风暴潮数值模拟与不同台风路径对增水的影响研究[D]. 广州: 华南理工大学, 2016.

    Huang Shan. Numerical simulation of strom surges in the Qiongzhou Strait and study on the influence of different typhoon tracks on surges[D]. Guangzhou: South China University of Technology, 2016.
    [36]
    吴洪宝, 吴蕾. 气候变率诊断和预测方法[M]. 北京: 气象出版社, 2010.

    Wu Hongbao, Wu Lei. Methods for Diagnosing and Forecasting Climate Variability[M]. Beijing: China Meteorological Press, 2010.
    [37]
    North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal function[J]. Monthly Weather Review, 1982, 110(7): 699−706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(5)

    Article views (171) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return