Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 11
Dec.  2020
Turn off MathJax
Article Contents
Wang Yue,Sun Yongfu,Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao,2020, 42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008
Citation: Wang Yue,Sun Yongfu,Xiu Zongxiang, et al. Numerical simulation of turbidity current and sediment characteristics in submarine canyons[J]. Haiyang Xuebao,2020, 42(11):75–87 doi: 10.3969/j.issn.0253-4193.2020.11.008

Numerical simulation of turbidity current and sediment characteristics in submarine canyons

doi: 10.3969/j.issn.0253-4193.2020.11.008
  • Received Date: 2019-11-11
  • Rev Recd Date: 2020-03-13
  • Available Online: 2020-11-20
  • Publish Date: 2020-11-25
  • Numerical simulation has become an important way to research the turbidity current on the seabed. The numerical simulation of the current and sedimentary characteristics of the turbidity current on the seabed is significance to the deep water sedimentary system, the stability evaluation of seabed engineering and the deep-sea oil and gas resource exploration. A numerical model based on Navier-Stokes equation and the turbulence k-ε model for the simulation of turbidity current is applied to study the current and deposition of turbidity current with constant inflows into continuous slope breaks. Initial conditions such as different particle size, velocity and suspended particle volume fraction were set in the simulation. Simulated results show that the averaged velocity of the turbidity current accelerates at the slope, on the nearly horizontal bed, velocity drops obviously and gradually deposits at the horizontal bed. The acceleration of turbidity current at small slope does not affect the deposition trend. The thickness of the current gradually increases due to the environmental water entrainment, and the turbidity current head shape and flow characteristics are conformed favorably with the measured data. In addition, this paper also simulates the turbidity current of multi-frequency continuous inflow, and compares the simulation results with the measured sedimentary characteristics. The results show that the deposition of multi-frequency continuous inflow turbidity current may form the superposition of several discontinuous bauma sequences on the vertical strata.
  • loading
  • [1]
    Middleton G V. Sediment deposition from turbidity currents[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 89−114. doi: 10.1146/annurev.ea.21.050193.000513
    [2]
    方爱民, 李继亮, 侯泉林. 浊流及相关重力流沉积研究综述[J]. 地质论评, 1998, 44(3): 270−280. doi: 10.3321/j.issn:0371-5736.1998.03.007

    Fang Aimin, Li Jiliang, Hou Quanlin. Sedimentation of turbidity currents and relative gravity flows: a review[J]. Geological Review, 1998, 44(3): 270−280. doi: 10.3321/j.issn:0371-5736.1998.03.007
    [3]
    Garcia M, Parker G. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition[J]. Science, 1989, 245(4916): 393−396. doi: 10.1126/science.245.4916.393
    [4]
    Gavey R, Carter L, Liu J T, et al. Frequent sediment density flows during 2006 to 2015, triggered by competing seismic and weather events: observations from subsea cable breaks off southern Taiwan[J]. Marine Geology, 2016, 384: 147−158.
    [5]
    Forel F A. Les ravins sous-lacustre des fleuves glaciaires[J]. Bulletin de la Société vaudoise des ingénieurs et des architectes, 1885, 101: 725−728.
    [6]
    Daly R A. Origin of submarine canyons[J]. American Journal of Science, 1936, 31(186): 401−420.
    [7]
    Kuenen P H. Experiments in connection with Daly's hypothesis on the formation of submarine canyons[J]. Leidse Geologische Mededelingen, 1937, 8(2): 327−351.
    [8]
    Bell H S. Studies for students: density currents as agents for transporting sediments[J]. The Journal of Geology, 1942, 50(5): 512−547. doi: 10.1086/625070
    [9]
    徐景平. 海底浊流研究百年回顾[J]. 中国海洋大学学报, 2014, 44(10): 98−105.

    Xu Jingping. Turbidity current research in the past century: an overview[J]. Periodical of Ocean University of China, 2014, 44(10): 98−105.
    [10]
    Inman D L, Nordstrom C E, Flick R E. Currents in submarine canyons: an air-sea-land interaction[J]. Annual Review of Fluid Mechanics, 1976, 8(1): 275−310. doi: 10.1146/annurev.fl.08.010176.001423
    [11]
    Dengler A T, Wilde P, Noda E K, et al. Turbidity currents generated by Hurricane Iwa[J]. Geo-Marine Letters, 1984, 4(1): 5−11. doi: 10.1007/BF02237967
    [12]
    Prior D B, Bornhold B D, Wiseman W J, et al. Turbidity current activity in a British Columbia Fjord[J]. Science, 1987, 237(4820): 1330−1333. doi: 10.1126/science.237.4820.1330
    [13]
    Zeng Jianjun, Lowe D R, Prior D B, et al. Flow properties of turbidity currents in Bute Inlet, British Columbia[J]. Sedimentology, 1991, 38(6): 975−996. doi: 10.1111/j.1365-3091.1991.tb00367.x
    [14]
    徐景平. 科学与技术并进——近20年来海底峡谷浊流观测的成就和挑战[J]. 地球科学进展, 2013, 28(5): 552−558. doi: 10.11867/j.issn.1001-8166.2013.05.0552

    Xu Jingping. Accomplishments and challenges in measuring turbidity currents in submarine canyons[J]. Advances in Earth Science, 2013, 28(5): 552−558. doi: 10.11867/j.issn.1001-8166.2013.05.0552
    [15]
    Kuenen H, Migliorini C I. Turbidity currents as a cause of graded bedding[J]. The Journal of Geology, 1950, 58(2): 91−127. doi: 10.1086/625710
    [16]
    Middleton G V. Experiments on density and turbidity currents: III. deposition of sediment[J]. Canadian Journal of Earth Sciences, 1967, 4(3): 475−505. doi: 10.1139/e67-025
    [17]
    Garcia M H, Parker G. Experiments on the entrainment of sediment into suspension by a dense bottom current[J]. Journal of Geophysical Research, 1993, 98(C3): 4793−4807. doi: 10.1029/92JC02404
    [18]
    Islam M A, Imran J. Vertical structure of continuous release saline and turbidity currents[J]. Journal of Geophysical Research: Oceans, 2010, 115(C8): C08025.
    [19]
    Britter R E, Simpson J E. Experiments on the dynamics of a gravity current head[J]. Journal of Fluid Mechanics, 1978, 88(2): 223−240. doi: 10.1017/S0022112078002074
    [20]
    Huang Heqing, Chen Guang, Zhang Qianfeng. The distribution characteristics of pollutants released at different cross-sectional positions of a river[J]. Environmental Pollution, 2010, 158(5): 1327−1333. doi: 10.1016/j.envpol.2010.01.010
    [21]
    Huang Heqing, Imran J, Pirmez C. Nondimensional parameters of depth-averaged gravity flow models[J]. Journal of Hydraulic Research, 2009, 47(4): 455−465. doi: 10.1080/00221686.2009.9522021
    [22]
    Huang Heqing, Imran J, Pirmez C. The depositional characteristics of turbidity currents in submarine sinuous channels[J]. Marine Geology, 2012, 329−331: 93−102. doi: 10.1016/j.margeo.2012.08.003
    [23]
    Huang H, Imran J, Pirmez C. Numerical modeling of poorly sorted depositional turbidity currents[J]. Journal of Geophysical Research: Oceans, 2007, 112(C1): C01014.
    [24]
    Huang Heqing, Imran J, Pirmez C. Numerical model of turbidity currents with a deforming bottom boundary[J]. Journal of Hydraulic Engineering, 2005, 131(4): 283−293.
    [25]
    Huang Heqing, Imran J, Pirmez C. Numerical study of turbidity currents with sudden-release and sustained-inflow mechanisms[J]. Journal of Hydraulic Engineering, 2008, 134(9): 1199−1209. doi: 10.1061/(ASCE)0733-9429(2008)134:9(1199)
    [26]
    Kassem A, Imran J. Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels[J]. Journal of Hydraulic Research, 2004, 42(6): 591−602. doi: 10.1080/00221686.2004.9628313
    [27]
    Strauss M, Glinsky M E. Turbidity current flow over an erodible obstacle and phases of sediment wave generation[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06007.
    [28]
    Giorgio S F, Peakall J, Ingham D B, et al. A unifying computational fluid dynamics investigation on the river-like to river-reversed secondary circulation in submarine channel bends[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6): C06012.
    [29]
    姜涛, 解习农, 汤苏林. 浊流形成条件的水动力学模拟及其在储层预测方面的作用[J]. 地质科技情报, 2005, 24(2): 1−6. doi: 10.3969/j.issn.1000-7849.2005.02.001

    Jiang Tao, Xie Xinong, Tang Sulin, et al. Hydrodynamic simulation of turbidity and its application for reservoir prediction[J]. Geological Science and Technology Information, 2005, 24(2): 1−6. doi: 10.3969/j.issn.1000-7849.2005.02.001
    [30]
    姜涛, 解习农, 汤苏林, 等. 浊流成因海底沉积波形成机理及其数值模拟[J]. 科学通报, 2007, 52(16): 1945−1950. doi: 10.3321/j.issn:0023-074x.2007.16.017

    Jiang Tao, Xie Xinong, Tang Sulin, et al. Formation mechanism and numerical simulation of submarine sedimentary wave of turbidity current[J]. Chinese Science Bulletin, 2007, 52(16): 1945−1950. doi: 10.3321/j.issn:0023-074x.2007.16.017
    [31]
    Jiang Tao, Zhang Yingzhao, Tang Sulin, et al. CFD simulation on the generation of turbidites in deepwater areas: a case study of turbidity current processes in Qiongdongnan Basin, northern South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(12): 127−137. doi: 10.1007/s13131-014-0582-7
    [32]
    Georgoulas A N, Angelidis P B, Panagiotidis T G, et al. 3D numerical modelling of turbidity currents[J]. Environmental Fluid Mechanics, 2010, 10(6): 603−635. doi: 10.1007/s10652-010-9182-z
    [33]
    郭彦英, 黄河清. 海底浊流在坡道转换处的流动及沉积的数值模拟[J]. 沉积学报, 2013, 31(6): 994−1000.

    Guo Yanying, Huang Heqing. Numerical simulation of the flow and deposition of turbidity currents with different slope changes[J]. Acta Sedimentologica Sinica, 2013, 31(6): 994−1000.
    [34]
    Middleton G V. Submarine fans and channels[M]//Sedimentology. Encyclopedia of Earth Science. Berlin, Heidelberg: Springer, 1978.
    [35]
    Muck M T, Underwood M B, 高振中. 浊流爬坡流动的实地观察, 理论和实验模型的对比[J]. 地质科学译丛, 1991, 8(4): 66−70.

    Muck M, Underwood M B, Gao Zhenzhong. Upslope flow of turbidity currents: A comparison among field observations, theory, and laboratory models[J]. China Academic Journal Electronic Publishing House, 1991, 8(4): 66−70.
    [36]
    姜辉. 浊流沉积的动力学机制与响应[J]. 石油与天然气地质, 2010, 31(4): 428−435. doi: 10.11743/ogg20100405

    Jiang Hui. Dynamical mechanism and depositional responses of turbidity current sedimentation[J]. Oil & Gas Geology, 2010, 31(4): 428−435. doi: 10.11743/ogg20100405
    [37]
    张一乙, 杨旸, 陈景东, 等. 悬沙组分对再悬浮过程响应的初步研究—以长江口南槽口门为例[J]. 海洋科学, 2016, 40(11): 129−137. doi: 10.11759/hykx20131212001

    Zhang Yiyi, Yang Yang, Chen Jingdong, et al. Preliminary study of the response of suspended sediment components to resuspension processes in the mouth of the South Channel, Changjiang River Estuary[J]. Marine Sciences, 2016, 40(11): 129−137. doi: 10.11759/hykx20131212001
    [38]
    Azpiroz-Zabala M, Cartigny M J B, Talling P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons[J]. Science Advances, 2017, 3(10): e1700200. doi: 10.1126/sciadv.1700200
    [39]
    Ercilla G, Wynn R B, Alonso B, et al. Initiation and evolution of turbidity current sediment waves in the Magdalena turbidite system[J]. Marine Geology, 2002, 192(1/3): 153−169.
    [40]
    Hale R P, Nittrouer C A, Liu J T, et al. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon, SW Taiwan[J]. Marine Geology, 2012, 326−328: 116−130. doi: 10.1016/j.margeo.2012.07.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article views (251) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return