Citation: | Zhao Zihan,Song Guisheng,Zhao Liang. Characteristics of dissolved oxygen and pH variations in summer off the Qinhuangdao[J]. Haiyang Xuebao,2020, 42(10):144–154 doi: 10.3969/j.issn.0253-4193.2020.10.014 |
[1] |
石强. 北黄海夏季溶解氧与表观耗氧量年际变化时空模态[J]. 应用海洋学报, 2018, 37(1): 9−25.
Shi Qiang. Spatio-temporal modes on inter-annual variation of dissolved oxygen and apparent oxygen utilization in summer of the North Yellow Sea[J]. Journal of Applied Oceanography, 2018, 37(1): 9−25.
|
[2] |
Diaz R J, Rosenberg R. Spreading dead zones and consequences for marine ecosystems[J]. Science, 2008, 321(5891): 926−929. doi: 10.1126/science.1156401
|
[3] |
Ekau W, Auel H, Pörtner H O, et al. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish)[J]. Biogeosciences, 2010, 7(5): 1669−1699. doi: 10.5194/bg-7-1669-2010
|
[4] |
Levin L A, Ekau W, Gooday A J, et al. Effects of natural and human-induced hypoxia on coastal benthos[J]. Biogeosciences, 2009, 6(10): 2063−2098. doi: 10.5194/bg-6-2063-2009
|
[5] |
Naqvi S W A, Bange H W, Farías L, et al. Marine hypoxia/anoxia as a source of CH4 and N2O[J]. Biogeosciences, 2010, 7(7): 2159−2190. doi: 10.5194/bg-7-2159-2010
|
[6] |
Breitburg D, Levin L A, Oschlies A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): 7240. doi: 10.1126/science.aam7240
|
[7] |
Murphy R R, Kemp W M, Ball W P. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading[J]. Estuaries and Coasts, 2011, 34(6): 1293−1309. doi: 10.1007/s12237-011-9413-7
|
[8] |
Turner R E, Rabalais N N, Justić D. Predicting summer hypoxia in the northern Gulf of Mexico: Redux[J]. Marine Pollution Bulletin, 2012, 64(2): 319−324. doi: 10.1016/j.marpolbul.2011.11.008
|
[9] |
Carstensen J, Conley D J, Bonsdorff E, et al. Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management[J]. AMBIO, 2014, 43(1): 26−36. doi: 10.1007/s13280-013-0474-7
|
[10] |
Wang Baodong. Hydromorphological mechanisms leading to hypoxia off the Changjiang Estuary[J]. Marine Environmental Research, 2009, 67(1): 53−58. doi: 10.1016/j.marenvres.2008.11.001
|
[11] |
Hagy J D, Boynton W R, Keefe C W, et al. Hypoxia in Chesapeake Bay, 1950−2001: long-term change in relation to nutrient loading and river flow[J]. Estuaries, 2004, 27(4): 634−658. doi: 10.1007/BF02907650
|
[12] |
Conley D J, Humborg C, Rahm L, et al. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry[J]. Environmental Science & Technology, 2002, 36(24): 5315−5320.
|
[13] |
Neretin L N, Volkov I I, Böttcher M E, et al. A sulfur budget for the Black Sea anoxic zone[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48(12): 2569−2593. doi: 10.1016/S0967-0637(01)00030-9
|
[14] |
韦钦胜, 王保栋, 于志刚, 等. 夏季长江口外缺氧频发的机制及酸化问题初探[J]. 中国科学: 地球科学, 2017, 60(2): 360−381. doi: 10.1007/s11430-015-5542-8
Wei Qinsheng, Wang Baodong, Yu Zhigang, et al. Mechanisms leading to the frequent occurrences of hypoxia and a preliminary analysis of the associated acidification off the Changjiang Estuary in summer[J]. Science China: Earth Sciences, 2017, 60(2): 360−381. doi: 10.1007/s11430-015-5542-8
|
[15] |
Yu Liuqian, Fennel K, Laurent A. A modeling study of physical controls on hypoxia generation in the northern Gulf of Mexico[J]. Journal of Geophysical Research: Oceans, 2015, 120(7): 5019−5039. doi: 10.1002/2014JC010634
|
[16] |
Zhou Feng, Chai Fei, Huang Daji, et al. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE[J]. Progress in Oceanography, 2017, 159: 237−254. doi: 10.1016/j.pocean.2017.10.008
|
[17] |
Zhang Haiyan, Zhao Liang, Sun Yao, et al. Contribution of sediment oxygen demand to hypoxia development off the Changjiang Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 192: 149−157. doi: 10.1016/j.ecss.2017.05.006
|
[18] |
Lehrter J C, Beddick D L Jr, Devereux R, et al. Sediment-water fluxes of dissolved inorganic carbon, O2, nutrients, and N2 from the hypoxic region of the Louisiana continental shelf[J]. Biogeochemistry, 2012, 109(1): 233−252.
|
[19] |
McCarthy M J, Carini S A, Liu Zhanfei, et al. Oxygen consumption in the water column and sediments of the northern Gulf of Mexico hypoxic zone[J]. Estuarine, Coastal and Shelf Science, 2013, 123: 46−53. doi: 10.1016/j.ecss.2013.02.019
|
[20] |
Reimers C E, Özkan-Haller H T, Berg P, et al. Benthic oxygen consumption rates during hypoxic conditions on the Oregon continental shelf: Evaluation of the eddy correlation method[J]. Journal of Geophysical Research: Oceans, 2012, 117(C2): C02021.
|
[21] |
Li Chenglong, Zhai Weidong. Decomposing monthly declines in subsurface-water pH and aragonite saturation state from spring to autumn in the North Yellow Sea[J]. Continental Shelf Research, 2019, 185: 37−50. doi: 10.1016/j.csr.2018.11.003
|
[22] |
刘喜惠, 刘方, 丁页, 等. 渤海环流对近岸海域无机氮分布特征的影响[J]. 中国环境监测, 2019(6): 78−84.
Liu Xihui, Liu Fang, Ding Ye, et al. Influence of circulation on the distribution characteristics of inorganic nitrogen in the Bohai Coastal Sea[J]. Environmental Monitoring in China, 2019(6): 78−84.
|
[23] |
Zhou Feng, Huang Daji, Xue Huijie, et al. Circulations associated with cold pools in the Bohai Sea on the Chinese continental shelf[J]. Continental Shelf Research, 2017, 137: 25−38. doi: 10.1016/j.csr.2017.02.005
|
[24] |
Li Yanfang, Wolanski E, Zhang Hua. What processes control the net currents through shallow straits? A review with application to the Bohai Strait, China[J]. Estuarine, Coastal and Shelf Science, 2015, 158: 1−11. doi: 10.1016/j.ecss.2015.03.013
|
[25] |
Lin Xiapei, Xie Shangping, Chen Xinping, et al. A well-mixed warm water column in the central Bohai Sea in summer: Effects of tidal and surface wave mixing[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11): C11017. doi: 10.1029/2006JC003504
|
[26] |
周锋, 黄大吉, 苏纪兰. 夏季渤海温跃层下的双中心冷水结构的数值模拟[J]. 科学通报, 2009, 54(11): 1591−1599. doi: 10.1360/csb2009-54-11-1591
Zhou Feng, Huang Daji, Su Jilan. Numerical simulation of the dual-core structure of the Bohai Sea bottom water in summer[J]. Chinese Science Bulletin, 2009, 54(11): 1591−1599. doi: 10.1360/csb2009-54-11-1591
|
[27] |
Wei Qinsheng, Wang Baodong, Yao Qingzhen, et al. Spatiotemporal variations in the summer hypoxia in the Bohai Sea (China) and controlling mechanisms[J]. Marine Pollution Bulletin, 2019, 138: 125−134. doi: 10.1016/j.marpolbul.2018.11.041
|
[28] |
石强. 渤海夏季溶解氧与表观耗氧量年际变化时空模态[J]. 应用海洋学学报, 2016, 35(2): 243−255. doi: 10.3969/J.ISSN.2095-4972.2016.02.014
Shi Qiang. Spatio-temporal mode for inter-annual change of dissolved oxygen and apparent oxygen utilization in summer Bohai Sea[J]. Journal of Applied Oceanography, 2016, 35(2): 243−255. doi: 10.3969/J.ISSN.2095-4972.2016.02.014
|
[29] |
翟惟东, 赵化德, 郑楠, 等. 2011年夏季渤海西北部、北部近岸海域的底层耗氧与酸化[J]. 科学通报, 2012, 57(9): 753−758. doi: 10.1360/csb2012-57-9-753
Zhai Weidong, Zhao Huade, Zheng Nan, et al. Coastal acidification in summer bottom oxygen-depleted waters in northwestern-northern Bohai Sea from June to August in 2011[J]. Chinese Science Bulletin, 2012, 57(9): 753−758. doi: 10.1360/csb2012-57-9-753
|
[30] |
张华, 李艳芳, 唐诚, 等. 渤海底层低氧区的空间特征与形成机制[J]. 科学通报, 2016, 61(14): 1612−1620. doi: 10.1360/N972015-00915
Zhang Hua, Li Yanfang, Tang Cheng, et al. Spatial characteristics and formation mechanisms of bottom hypoxia zone in the Bohai Sea during summer[J]. Chinese Science Bulletin, 2016, 61(14): 1612−1620. doi: 10.1360/N972015-00915
|
[31] |
Zhao Huade, Kao S J, Zhai Weidong, et al. Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China[J]. Continental Shelf Research, 2017, 134: 15−25. doi: 10.1016/j.csr.2016.12.004
|
[32] |
Zhai Weidong, Zhao Huade, Su Jilan, et al. Emergence of summertime hypoxia and concurrent carbonate mineral suppression in the central Bohai Sea, China[J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(9): 2768−2785. doi: 10.1029/2019JG005120
|
[33] |
赵骞, 陈玥, 陈元, 等. 秦皇岛海域海流特征及规模化养殖对其影响的观测研究[J]. 海洋学报, 2019(6): 23−36.
Zhao Qian, Chen Yue, Chen Yuan, et al. Current characteristics and its response to large-scale mariculture in Qinhuangdao coastal area based on in-situ observation[J]. Haiyang Xuebao, 2019(6): 23−36.
|
[34] |
Song Guisheng, Zhao Liang, Chai Fei, et al. Summertime oxygen depletion and acidification in Bohai Sea, China[J]. Frontiers in Marine Science, 2020, 7: 252. doi: 10.3389/fmars.2020.00252
|
[35] |
Gill A E. Atmosphere-Ocean Dynamics[M]. London: Academic Press, 1982.
|
[36] |
石晓勇, 陆茸, 张传松, 等. 长江口邻近海域溶解氧分布特征及主要影响因素[J]. 中国海洋大学学报, 2006, 36(2): 287−290, 294.
Shi Xiaoyong, Lu Rong, Zhang Chuansong, et al. Distribution and main influence factors process of dissolved oxygen in the adjacent area of the Changjiang Estuary in autumn[J]. Journal of Ocean University of China, 2006, 36(2): 287−290, 294.
|
[37] |
张莹莹, 张经, 吴莹, 等. 长江口溶解氧的分布特征及影响因素研究[J]. 环境科学, 2007, 28(8): 1649−1654. doi: 10.3321/j.issn:0250-3301.2007.08.001
Zhang Yingying, Zhang Jing, Wu Ying, et al. Characteristics of dissolved oxygen and its affecting factors in the Yangtze Estuary[J]. Environmental Science, 2007, 28(8): 1649−1654. doi: 10.3321/j.issn:0250-3301.2007.08.001
|
[38] |
高小丰, 吴莹, 朱卓毅. 长江口外浮游植物死亡释放溶解有机质的降解及其溶氧消耗[J]. 海洋与湖沼, 2015, 46(5): 1010−1017.
Gao Xiaofeng, Wu Ying, Zhu Zhuoyi. Degradation of dissolved organic matter from dead phytoplankton off the Changjiang River Estuary and the resulting dissolved oxygen consumption[J]. Oceanologia et Limnologia Sinica, 2015, 46(5): 1010−1017.
|
[39] |
王奎, 陈建芳, 金海燕, 等. 长江口及邻近海域营养盐四季分布特征[J]. 海洋学研究, 2011, 29(3): 18−35. doi: 10.3969/j.issn.1001-909X.2011.03.004
Wang Kui, Chen Jianfang, Jin Haiyan, et al. The four seasons nutrients distribution in Changjiang River Estuary and its adjacent East China Sea[J]. Journal of Marine Sciences, 2011, 29(3): 18−35. doi: 10.3969/j.issn.1001-909X.2011.03.004
|
[40] |
Zhu Zhuoyi, Hu Jun, Song Guodong, et al. Phytoplankton-driven dark plankton respiration in the hypoxic zone off the Changjiang Estuary, revealed by in vitro incubations[J]. Journal of Marine Systems, 2016, 154: 50−56. doi: 10.1016/j.jmarsys.2015.04.009
|
[41] |
Murrell C M, Lehrter C J. Sediment and lower water column oxygen consumption in the seasonally hypoxic region of the Louisiana continental shelf[J]. Estuaries and Coasts, 2011, 34(5): 912−924. doi: 10.1007/s12237-010-9351-9
|
[42] |
Fu Yanzhao, Xu Shiguo, Liu Jianwei. Temporal-spatial variations and developing trends of Chlorophyll-a in the Bohai Sea, China[J]. Estuarine, Coastal and Shelf Science, 2016, 173: 49−56. doi: 10.1016/j.ecss.2016.02.016
|
[43] |
Xu Xin, Yu Zhiming, He Liyan, et al. Nano- and microphytoplankton community characteristics in brown tide bloom-prone waters of the Qinhuangdao coast, Bohai Sea, China[J]. Science China: Earth Sciences, 2017, 60(6): 1189−1200. doi: 10.1007/s11430-017-9036-0
|