Citation: | Chen Shuang,Chen Xinjun. Effects of climate change on catch composition, diversity of catch and mean trophic level in the Northeast Atlantic Ocean[J]. Haiyang Xuebao,2020, 42(10):100–109 doi: 10.3969/j.issn.0253-4193.2020.10.010 |
[1] |
Brander K M. Global fish production and climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(50): 19709−19714.
|
[2] |
Pörtner H O, Knust R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance[J]. Science, 2007, 315(5808): 95−97.
|
[3] |
Cheung W W L, Lam V W Y, Sarmiento J L, et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[J]. Global Change Biology, 2010, 16(1): 24−35.
|
[4] |
Beaugrand G. Marine Biodiversity, Climatic Variability and Global Change[M]. New York: Routledge, 2014: 486.
|
[5] |
Pauly D, Watson R. Background and interpretation of the ‘Marine Trophic Index’ as a measure of biodiversity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1454): 415−423.
|
[6] |
余为, 陈新军, 易倩. 不同气候模态下西北太平洋柔鱼渔场环境特征分析[J]. 水产学报, 2017, 41(4): 525−534.
Yu Wei, Chen Xinjun, Yi Qian. Analysis of variations in the environmental conditions on the fishing ground of neon flying squid (Ommastrephes bartramii) in the Northwestern Pacific Ocean under different climate modes[J]. Journal of Fisheries of China, 2017, 41(4): 525−534.
|
[7] |
汪金涛, 陈新军. 中西太平洋鲣鱼渔场的重心变化及其预测模型建立[J]. 中国海洋大学学报, 2013, 43(8): 44−48.
Wang Jingtao, Chen Xinjun. Changes and prediction of the fishing ground gravity of skipjack (Katsuwonus pelamis) in western-central Pacific[J]. Periodical of Ocean University of China, 2013, 43(8): 44−48.
|
[8] |
IPCC, 2014. Climate Change 2014: Impact, Adaptation, and Vulnerability[R]. Cambridge: Cambridge University Press, 2014.
|
[9] |
Sirabella P, Giuliani A, Colosimo A, et al. Breaking down the climate effects on cod recruitment by principal component analysis and canonical correlation[J]. Marine Ecology Progress Series, 2001, 216: 213−222.
|
[10] |
Drinkwater K F. The response of Atlantic cod (Gadus morhua) to future climate change[J]. ICES Journal of Marine Science, 2005, 62(7): 1327−1337.
|
[11] |
Perry A L, Low P J, Ellis J R, et al. Climate change and distribution shifts in marine fishes[J]. Science, 2005, 308(5730): 1912−1915.
|
[12] |
Rose G A. Capelin (Mallotus villosus) distribution and climate: a sea “canary” for marine ecosystem change[J]. ICES Journal of Marine Science, 2005, 62(7): 1524−1530.
|
[13] |
Fossheim M, Johannesen E, Primicerio R, et al. Spatial variation and structural change of the Barents Sea fish community[R]. Torsharn, Faroe Island: International Council for the Exploration of the Sea, 2009, E: 21.
|
[14] |
Stenevik E K, Sundby S. Impacts of climate change on commercial fish stocks in Norwegian waters[J]. Marine Policy, 2007, 31(1): 19−31.
|
[15] |
Simpson E H. Measurement of diversity[J]. Nature, 1949, 163(4148): 688.
|
[16] |
Pauly D, Christensen V, Guénette S, et al. Towards sustainability in world fisheries[J]. Nature, 2002, 418(6898): 689−695.
|
[17] |
Pauly D, Palomares M L, Froese R, et al. Fishing down Canadian aquatic food webs[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58(1): 51−62.
|
[18] |
Tian Y J, Kidokoro H, Watanabe T. Long-term changes in the fish community structure from the Tsushima warm current region of the Japan/East Sea with an emphasis on the impacts of fishing and climate regime shift over the last four decades[J]. Progress in Oceanography, 2006, 68(2/4): 217−237.
|
[19] |
Caddy J F, Garibaldi L. Apparent changes in the trophic composition of world marine harvests: the perspective from the FAO capture database[J]. Ocean & Coastal Management, 2000, 43(8/9): 615−655.
|
[20] |
Pauly D, Christensen V V, Dalsgaard J, et al. Fishing down marine food webs[J]. Science, 1998, 279(5352): 860−863.
|
[21] |
United Nations Food and Agricuture Organization. The State of World Fisheries and Aquaculture[R]. Rome: FAO, 2000.
|
[22] |
Simmonds E J. Comparison of two periods of North Sea herring stock management: success, failure, and monetary value[J]. ICES Journal of Marine Science, 2007, 64(4): 686−692.
|
[23] |
Horwood J, O'Brien C, Darby C. North Sea cod recovery?[J]. ICES Journal of Marine Science, 2006, 63(6): 961−968.
|
[24] |
焦敏, 高郭平, 陈新军. 东北大西洋海洋捕捞渔获物营养级变化研究[J]. 海洋学报, 2016, 38(2): 48−63.
Jiao Min, Gao Guoping, Chen Xinjun. Changes in trophic level of marine catches in the northeast Atlantic[J]. Haiyang Xuebao, 2016, 38(2): 48−63.
|
[25] |
林楠, 苗振清, 卢占晖. 东海中部夏季鱼类群落结构及其多样性分析[J]. 广东海洋大学学报, 2009, 29(3): 42−47. doi: 10.3969/j.issn.1673-9159.2009.03.009
Lin Nan, Miao Zhenqing, Lu Zhanhui. Structure and diversity of fish communities in summer in the middle of the East China Sea[J]. Journal of Guangdong Ocean University, 2009, 29(3): 42−47. doi: 10.3969/j.issn.1673-9159.2009.03.009
|
[26] |
宋普庆, 张静, 林龙山, 等. 台湾海峡游泳动物种类组成及其多样性[J]. 生物多样性, 2012, 20(1): 32−40.
Song Puqing, Zhang Jing, Lin Longshan, et al. Nekton species composition and biodiversity in Taiwan Strait[J]. Biodiversity Science, 2012, 20(1): 32−40.
|
[27] |
刘尊雷, 袁兴伟, 杨林林, 等. 气候变化对东海北部外海越冬场渔业群落格局的影响[J]. 应用生态学报, 2015, 26(3): 901−911.
Liu Zunlei, Yuan Xingwei, Yang Linlin, et al. Effect of climate change on the fisheries community pattern in the overwintering ground of open waters of northern East China Sea[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 901−911.
|
[28] |
李励年, 林龙山, 缪圣赐. 一场由气候变化引发的渔业资源争夺战—欧洲“鲭鱼战争”持续升温[J]. 渔业信息与战略, 2013, 28(1): 75−80. doi: 10.3969/j.issn.1004-8340.2013.01.013
Li Linian, Lin Longshan, Miao Shengci. The dispute on fishery resources caused by climate change—mackerel war intensified in Europe[J]. Fishery Information & Strategy, 2013, 28(1): 75−80. doi: 10.3969/j.issn.1004-8340.2013.01.013
|
[29] |
Pörtner H O. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 132(4): 739−761.
|
[30] |
Pörtner H O. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals[J]. Naturwissenschaften, 2001, 88(4): 137−146.
|
[31] |
Hutchings J A, Myers R A. What can be learned from the collapse of a renewable resource? Atlantic Cod, Gadus morhua, of newfoundland and Labrador[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1994, 51(9): 2126−2146.
|
[32] |
Pepin P, Orr D C, Anderson J T. Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (Gadus morhua)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1997, 54(S1): 2−10.
|
[33] |
Drinkwater K F, Beaugrand G, Kaeriyama M, et al. On the processes linking climate to ecosystem changes[J]. Journal of Marine Systems, 2010, 79(3/4): 374−388.
|
[34] |
Tian Y J, Kidokoro H, Fujino T. Interannual-decadal variability of demersal fish assemblages in the Tsushima Warm Current region of the Japan Sea: impacts of climate regime shifts and trawl fisheries with implications for ecosystem-based management[J]. Fisheries Research, 2011, 112(3): 140−153.
|
[35] |
Overland J E, Spillane M C, Soreide N N. Integrated analysis of physical and biological pan-Arctic change[J]. Climatic Change, 2004, 63(3): 291−322.
|
[36] |
Chavez F P, Ryan J, Lluch-Cota S E, et al. From anchovies to sardines and back: multidecadal change in the Pacific Ocean[J]. Science, 2003, 299(5604): 217−221.
|
[37] |
Brunel T, Boucher J. Long-term trends in fish recruitment in the north-east Atlantic related to climate change[J]. Fisheries Oceanography, 2010, 16(4): 336−349.
|
[38] |
Reid P C, Borges M D F, Svendsen E. A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery[J]. Fisheries Research, 2001, 50(1/2): 163−171.
|
[39] |
Ottersen G, Stenseth N C. Atlantic climate governs oceanographic and ecological variability in the Barents Sea[J]. Limnology and Oceanography, 2001, 46(7): 1774−1780.
|