Citation: | Zhong Guorong,Li Xuegang,Qu Baoxiao, et al. A general regression neural network approach to reconstruct global 1°×1° resolution sea surface p CO2[J]. Haiyang Xuebao,2020, 42(10):70–79 doi: 10.3969/j.issn.0253-4193.2020.10.007 |
[1] |
曲宝晓, 宋金明, 袁华茂, 等. 东海海−气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783
Qu Baoxiao, Song Jinming, Yuan Huamao, et al. Advances of seasonal variations and controlling factors of the air-sea CO2 flux in the East China Sea[J]. Advances in Earth Science, 2013, 28(7): 783−793. doi: 10.11867/j.issn.1001-8166.2013.07.0783
|
[2] |
Takahashi T, Sutherland S C, Feely R A, et al. Decadal change of the surface water pCO2 in the North Pacific: a synthesis of 35 years of observations[J]. Journal of Geophysical Research: Oceans, 2006, 111(C7): C07S05.
|
[3] |
Song Jinming. Biogeochemical Processes of Biogenic Elements in China Marginal Seas[M]. Berlin, Heidelberg: Springer Science & Business Media, 2010: 140−144.
|
[4] |
宋金明, 李学刚, 袁华茂, 等. 渤黄东海生源要素的生物地球化学[M]. 北京: 科学出版社, 2019: 45-47.
Song Jinming, Li Xuegang, Yuan Huamao, et al. Biogeochemistry of Biogenic Elements in the Bohai Sea, Yellow Sea and East China Sea[M]. Beijing: Science Press, 2019: 45−47.
|
[5] |
Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(8/10): 554−577.
|
[6] |
Takamura T R, Inoue H Y, Midorikawa T, et al. Seasonal and inter-annual variations in
|
[7] |
Sarma V V S S, Saino T, Sasaoka K, et al. Basin-scale pCO2 distribution using satellite sea surface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochemical Cycles, 2006, 20(3): GB3005.
|
[8] |
Lefévre N, Watson A J, Watson A R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data[J]. Tellus B: Chemical and Physical Meteorology, 2005, 57(5): 375−384. doi: 10.1111/j.1600-0889.2005.00164.x
|
[9] |
Zeng J Y, Nojiri Y, Nakaoka S I, et al. Surface ocean CO2 in 1990−2011 modelled using a feed-forward neural network[J]. Geoscience Data Journal, 2015, 2(1): 47−51. doi: 10.1002/gdj3.26
|
[10] |
Zeng J, Nojiri Y, Landschützer P, et al. A global surface ocean fCO2 climatology based on a feed-forward neural network[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31(8): 1838−1849. doi: 10.1175/JTECH-D-13-00137.1
|
[11] |
Telszewski M, Chazottes A, Schuster U, et al. Estimating the monthly pCO2 distribution in the North Atlantic using a self-organizing neural network[J]. Biogeosciences, 2009, 6(8): 1405−1421. doi: 10.5194/bg-6-1405-2009
|
[12] |
Nakaoka S, Telszewski M, Nojiri Y, et al. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique[J]. Biogeosciences, 2013, 10(9): 6093−6106. doi: 10.5194/bg-10-6093-2013
|
[13] |
Denvil-Sommer A, Gehlen M, Vrac M, et al. LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean[J]. Geoscientific Model Development, 2019, 12(5): 2091−2105. doi: 10.5194/gmd-12-2091-2019
|
[14] |
Körtzinger A. Determination of carbon dioxide partial pressure (p(CO2))[M]//Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis. 3rd ed. New York: Wiley, 1999: 149−158.
|
[15] |
Specht D F. A general regression neural network[J]. IEEE Transactions on Neural Networks, 1991, 2(6): 568−576. doi: 10.1109/72.97934
|
[16] |
陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013: 208−237.
Chen Ming. MATLAB Neural Network Principle and Example Fine Solution[M]. Beijing: Tsinghua University Press, 2013: 208−237.
|
[17] |
Chen Shuangliang, Hu Chuanmin, Barnes B B, et al. A machine learning approach to estimate surface ocean pCO2 from satellite measurements[J]. Remote Sensing of Environment, 2019, 228: 203−226. doi: 10.1016/j.rse.2019.04.019
|
[18] |
Friedrich T, Oschlies A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: a methodological study[J]. Journal of Geophysical Research: Oceans, 2009, 114(C3): C03020.
|
[19] |
Hales B, Strutton P G, Saraceno M, et al. Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific[J]. Progress in Oceanography, 2012, 103: 1−15. doi: 10.1016/j.pocean.2012.03.001
|
[20] |
Landschützer P, Gruber N, Bakker D C E, et al. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink[J]. Biogeosciences, 2013, 10(11): 7793−7815. doi: 10.5194/bg-10-7793-2013
|
[21] |
Laruelle G G, Landschützer P, Gruber N, et al. Global high-resolution monthly pCO2 climatology for the coastal ocean derived from neural network interpolation[J]. Biogeosciences, 2017, 14(19): 4545−4561. doi: 10.5194/bg-14-4545-2017
|
[22] |
Zeng Jiye, Matsunaga T, Saigusa N, et al. Technical note: Evaluation of three machine learning models for surface ocean CO2 mapping[J]. Ocean Science, 2017, 13(2): 303−313. doi: 10.5194/os-13-303-2017
|
[23] |
Landschützer P, Gruber N, Bakker D C E. Decadal variations and trends of the global ocean carbon sink[J]. Global Biogeochemical Cycles, 2016, 30(10): 1396−1417. doi: 10.1002/2015GB005359
|
[24] |
Takahashi T, Sutherland S C, Chipman D W, et al. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations[J]. Marine Chemistry, 2014, 164: 95−125. doi: 10.1016/j.marchem.2014.06.004
|