Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 10
Nov.  2020
Turn off MathJax
Article Contents
Lin Wuhui,He Jianhua,Yu Kefu, et al. 90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao,2020, 42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005
Citation: Lin Wuhui,He Jianhua,Yu Kefu, et al. 90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea[J]. Haiyang Xuebao,2020, 42(10):47–58 doi: 10.3969/j.issn.0253-4193.2020.10.005

90Sr in marine environment: Comparison of seas surrounding Japan and the South China Sea

doi: 10.3969/j.issn.0253-4193.2020.10.005
  • Received Date: 2020-04-02
  • Rev Recd Date: 2020-07-19
  • Available Online: 2020-11-13
  • Publish Date: 2020-10-25
  • 90Sr is recognized to be one of most important artificial radionuclides. A huge amount of radioactive substance (e.g., 90Sr) was released into marine environment after the Fukushima Nuclear Accident (FNA). High 90Sr activity was still observed in the treated wastewater which was stored on site in many tanks. However, 90Sr was rarely investigated in marine environment due to its complicated and time-consuming analytical procedure after the FNA, constraining a comprehensive understanding of the fate of 90Sr in marine environment. We discussed the 90Sr activity and environmental half-life (EHL) in seas surrounding Japan (SSJ) and the South China Sea (SCS) on the basis of previous data and our 90Sr data in seawater and marine biotas (e.g., sargassum, shrimp, oyster, mangrove, reef coral) collected from the SCS during 2015−2018. We found that the EHL of 90Sr in the SSJ was 15.4 years during 1975−2010. 90Sr in the SSJ was significantly elevated after the FNA. Radiation dose rate of 90Sr on marine fish was increased by five orders of magnitude after the FNA relative to the baseline before the FNA. As the downstream basin of the North Pacific Subtropical Gyre, the SCS was not identified with noticeable 90Sr-derived from the FNA. The EHL of 90Sr in the SCS was calculated to be 26.7 years during 1984−2018 based on the compilation of historical 90Sr data. The contrasting patterns of the EHL of 90Sr and 137Cs in the marginal seas and open oceans were attributed to the distinct sources (river input) and sinks (marine biological pump) of 90Sr and 137Cs. In the context of challenge of 90Sr analytical method in marine environment, extremely high 90Sr concentration factor (around 1000 L/kg) was observed in the reef coral skeleton after comparing with concentration factors of 90Sr in more than 10 kinds of marine biotas. Additionally, reef coral is potential to be a reliable 90Sr marine bioindicator with other advantages of easy availability in large quantity, growth at a fixed location, continue record with high resolution, and simple pretreatment. The study of 90Sr in reef coral will not only help to reveal distinct sources and sinks of artificial radionuclides in marine environment, but also provide valuable insights to optimization and improvement of standards/guidelines of marine radioactivity monitoring program.
  • loading
  • [1]
    林武辉, 陈立奇, 何建华, 等. 日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015, 35(1): 269−276.

    Lin Wuhui, Chen Liqi, He Jianhua, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident[J]. China Environmental Science, 2015, 35(1): 269−276.
    [2]
    Lin Wuhui, Chen Liqi, Yu Wen, et al. Radioactive source terms for the Fukushima Nuclear Accident[J]. Science China: Earth Sciences, 2016, 59(1): 214−222. doi: 10.1007/s11430-015-5112-8
    [3]
    Lin Wuhui, Chen Liqi, Yu Wen, et al. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere[J]. Atmospheric Environment, 2015, 102: 311−322. doi: 10.1016/j.atmosenv.2014.11.047
    [4]
    Buesseler K, Dai Minhan, Aoyama M, et al. Fukushima daiichi-derived radionuclides in the ocean: transport, fate, and impacts[J]. Annual Review of Marine Science, 2017, 9: 173−203. doi: 10.1146/annurev-marine-010816-060733
    [5]
    Povinec P P, Hirose K, Aoyama M. Radiostrontium in the western North Pacific: characteristics, behavior, and the Fukushima impact[J]. Environmental Science & Technology, 2012, 46(18): 10356−10363.
    [6]
    邓芳芳, 林武辉, 林静, 等. 海水中90Sr测量的国际比对研究[J]. 海洋环境科学, 2018, 37(3): 448−451, 463. doi: 10.12111/j.cnki.mes20180321

    Deng Fangfang, Lin Wuhui, Lin Jing, et al. International comparison of 90Sr analysis in seawater[J]. Marine Environmental Science, 2018, 37(3): 448−451, 463. doi: 10.12111/j.cnki.mes20180321
    [7]
    邓芳芳, 林武辉, 于涛, 等. 海洋沉积物中90Sr的分析方法[J]. 核化学与放射化学, 2015, 37(4): 231−237. doi: 10.7538/hhx.2015.37.04.0231

    Deng Fangfang, Lin Wuhui, Yu Tao, et al. 90Sr analysis method in the marine sediments[J]. Journal of Nuclear and Radiochemistry, 2015, 37(4): 231−237. doi: 10.7538/hhx.2015.37.04.0231
    [8]
    Vajda N, Kim C K. Determination of radiostrontium isotopes: A review of analytical methodology[J]. Applied Radiation and Isotopes, 2010, 68(12): 2306−2326. doi: 10.1016/j.apradiso.2010.05.013
    [9]
    Shao Yang, Yang Guosheng, Tazoe H, et al. A review of measurement methodologies and their applications to environmental 90Sr[J]. Journal of Environmental Radioactivity, 2018, 192: 321−333. doi: 10.1016/j.jenvrad.2018.07.013
    [10]
    Casacuberta N, Masqué P, Garcia-Orellana J, et al. 90Sr and 89Sr in seawater off Japan as a consequence of the Fukushima Dai-ichi nuclear accident[J]. Biogeosciences, 2013, 10(6): 3649−3659. doi: 10.5194/bg-10-3649-2013
    [11]
    Yu Wen, He Jianhua, Lin Wuhui, et al. Distribution and risk assessment of radionuclides released by Fukushima nuclear accident at the Northwest Pacific[J]. Journal of Environmental Radioactivity, 2015, 142: 54−61. doi: 10.1016/j.jenvrad.2015.01.005
    [12]
    Castrillejo M, Casacuberta N, Breier C F, et al. Reassessment of 90Sr, 137Cs, and 134Cs in the coast off Japan derived from the Fukushima Dai-ichi nuclear accident[J]. Environmental Science & Technology, 2016, 50(1): 173−180.
    [13]
    Nagaoka M, Yokoyama H, Fujita H, et al. Spatial distribution of radionuclides in seabed sediments off Ibaraki coast after the Fukushima Daiichi Nuclear Power Plant accident[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(2): 1305−1308. doi: 10.1007/s10967-014-3633-9
    [14]
    Shozugawa K, Riebe B, Walther C, et al. Fukushima-derived radionuclides in sediments of the Japanese Pacific Ocean coast and various Japanese water samples (seawater, tap water, and coolant water of Fukushima Daiichi reactor unit 5)[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 307: 1787−1793.
    [15]
    Miki S, Fujimoto K, Shigenobu Y, et al. Concentrations of 90Sr and 137Cs/90Sr activity ratios in marine fishes after the Fukushima Dai-ichi Nuclear Power Plant accident[J]. Fisheries Oceanography, 2017, 26(2): 221−233. doi: 10.1111/fog.12182
    [16]
    Johansen M P, Ruedig E, Tagami K, et al. Radiological dose rates to marine fish from the Fukushima Daiichi accident: the first three years across the North Pacific[J]. Environmental Science & Technology, 2015, 49(3): 1277−1285.
    [17]
    Men Wu, Deng Fangfang, He Jianhua, et al. Radioactive impacts on nekton species in the Northwest Pacific and humans more than one year after the Fukushima nuclear accident[J]. Ecotoxicology and Environmental Safety, 2017, 144: 601−610. doi: 10.1016/j.ecoenv.2017.06.042
    [18]
    陈锦芳, 刘广山. 环境样品中90Sr的分析方法及其在海洋学研究中的应用[J]. 台湾海峡, 2003, 22(3): 395−406.

    Chen Jinfang, Liu Guangshan. Reviews on 90Sr measurement methods and applications in oceanographical research in environment[J]. Journal of Oceanography in Taiwan Strait, 2003, 22(3): 395−406.
    [19]
    Steinhauser G. Fukushima’s forgotten radionuclides: a review of the understudied radioactive emissions[J]. Environmental Science & Technology, 2014, 48(9): 4649−4663.
    [20]
    Cai Zhongya, Gan Jianping, Liu Zhiqiang, et al. Progress on the formation dynamics of the layered circulation in the South China Sea[J]. Progress in Oceanography, 2020, 181: 102246. doi: 10.1016/j.pocean.2019.102246
    [21]
    Yamada M, Zheng Jian, Wang Zhongliang. 137Cs, 239+240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas[J]. Science of the Total Environment, 2006, 366(1): 242−252. doi: 10.1016/j.scitotenv.2005.08.014
    [22]
    Yamada M, Wang Zhongliang, Zheng Jian. The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism[J]. Journal of Environmental Radioactivity, 2006, 90(2): 163−171. doi: 10.1016/j.jenvrad.2006.06.013
    [23]
    Wu Junwen, Sun Jiang, Xiao Xiyu. An overview of current knowledge concerning the inventory and sources of plutonium in the China Seas[J]. Marine Pollution Bulletin, 2020, 150: 110599. doi: 10.1016/j.marpolbul.2019.110599
    [24]
    Wu Junwen. Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China seas: evaluation based on field observation of 137Cs[J]. Marine Pollution Bulletin, 2018, 127: 45−53. doi: 10.1016/j.marpolbul.2017.11.056
    [25]
    Povinec P P, Aarkrog A, Buesseler K O, et al. 90Sr, 137Cs and 239, 240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results[J]. Journal of Environmental Radioactivity, 2005, 81(1): 63−87. doi: 10.1016/j.jenvrad.2004.12.003
    [26]
    Brown J E, Alfonso B, Avila R, et al. The ERICA tool[J]. Journal of Environmental Radioactivity, 2008, 99(9): 1371−1383. doi: 10.1016/j.jenvrad.2008.01.008
    [27]
    刘伟容, 齐宇虹, 林峰, 等. 海南昌江核电厂两次海域放射性调查结果分析[J]. 应用海洋学学报, 2020, 39(1): 63−70.

    Liu Weirong, Qi Yuhong, Lin Feng, et al. Result analysis of two marine radioactivity surveys in the adjacent waters of Hainan Changjiang NPP[J]. Journal of Applied Oceanography, 2020, 39(1): 63−70.
    [28]
    陈宝才, 彭崇, 周花珑, 等. 防城港核电厂运行初期周围环境中90Sr放射性水平调查[J]. 中国辐射卫生, 2019, 28(5): 575−578.

    Chen Baocai, Peng Chong, Zhou Hualong, et al. Investigation of 90Sr radioactivity level in the environment of Fangchenggang Nuclear Power Plant during initial operation period[J]. Chinese Journal of Radiological Health, 2019, 28(5): 575−578.
    [29]
    朱深河, 陈日荣, 张家俊. 阳江核电站外围环境海水中锶-90放射性水平调查[J]. 资源节约与环保, 2018(8): 84−85. doi: 10.3969/j.issn.1673-2251.2018.08.071

    Zhu Shenhe, Chen Rirong, Zhang Jiajun. Investigation on Sr-90 radioactivity level in seawater of external environment of Yangjiang Nuclear Power Plant[J]. Resources Economization & Environmental Protection, 2018(8): 84−85. doi: 10.3969/j.issn.1673-2251.2018.08.071
    [30]
    姚海云, 朱玲, 周滟, 等. 1995-2009年我国近岸海域海水中放射性核素水平监测[J]. 辐射防护通讯, 2010, 30(5): 13−17. doi: 10.3969/j.issn.1004-6356.2010.05.003

    Yao Haiyun, Zhu Ling, Zhou Yan, et al. Monitoring of radioactivity levels of sea water in near coast marine environment in China during 1995−2009[J]. Radiation Protection Bulletin, 2010, 30(5): 13−17. doi: 10.3969/j.issn.1004-6356.2010.05.003
    [31]
    刘广山, 周彩芸. 大亚湾不同介质中137Cs和90Sr的含量及行为特征[J]. 台湾海峡, 2000, 19(3): 261−268.

    Liu Guangshan, Zhou Caiyun. Contents and behavior characteristics of 137Cs and 90Sr in various mediums of Daya Bay[J]. Journal of Oceanography in Taiwan Strait, 2000, 19(3): 261−268.
    [32]
    陈志东, 林清, 邓飞, 等. 大亚湾核电站周围海洋介质中核素90Sr、137Cs的放射性水平[C]//全国放射性流出物和环境监测与评价研讨会论文集. 北京: 中国核学会, 中国环境学会, 2003: 110−115.

    Chen Zhidong, Lin Qing, Deng Fei, et al. Radioactivity levels of nuclides 90Sr and 137Cs in marine media around Daya Bay Nuclear Power Plant[C]//Compilation of Papers from National Symposium on Radioactive Effluent and Environmental Monitoring and Evaluation. Beijing: China Nuclear Society, China Environmental Society, 2003: 110−115.
    [33]
    林炳兴, 周治发. 广东大亚湾沿海地区生态环境中90Sr含量水平调查[J]. 辐射防护, 1995, 15(2): 129−137.

    Lin Bingxing, Zhou Zhifa. Investigation of 90Sr activity level of Daya Bay coastal areas in Guangdong[J]. Radiation Protection, 1995, 15(2): 129−137.
    [34]
    陈进兴. 南海近海水中U, 90Sr, 137Cs, 3H和总β放射性分布[J]. 海洋科学, 1993, 17(1): 69−70.

    Chen Jinxing. Distribution of U, 90Sr, 137Cs, 3H and gross Beta radioactivity in offshore water of South China Sea[J]. Marine Sciences, 1993, 17(1): 69−70.
    [35]
    吴世炎, 施纯坦, 陈进兴. 广东近岸海域表层水中90Sr和137Cs的分布[J]. 台湾海峡, 1992, 11(4): 363−367.

    Wu Shiyan, Shi Chuntan, Chen Jinxing. Distribution of 90Sr and 137Cs in coastal surface waters of Guangdong[J]. Journal of Oceanography in Taiwan Strait, 1992, 11(4): 363−367.
    [36]
    刘怀, 陈炽, 梁谦林. 南海珠江口海区人工放射性核素90Sr, 137Cs分布特征的研究[J]. 海洋科学, 1989(1): 62−64.

    Liu Huai, Chen Zhi, Liang Qianlin. Study of distribution character of artificial radioactives 90Sr, 137Cs in the Zhujiang Estuary area in South China Sea[J]. Marine Sciences, 1989(1): 62−64.
    [37]
    刘怀. 南海近海海水中人工放射性核素90Sr的含量及分布[J]. 海洋科学, 1987, 11(5): 36−37.

    Liu Huai. The content and distribution of artificical radionuclide 90Sr in the offshore water in South China Sea[J]. Marine Sciences, 1987, 11(5): 36−37.
    [38]
    吉长余, 张东果. 大亚湾核电站1994~2003年环境辐射监测结果与分析[J]. 辐射防护, 2004, 24(3/4): 173−190.

    Ji Changyu, Zhang Dongguo. Results and analysis of environmental radiation monitoring at GNPS (1994~2003)[J]. Radiation Protection, 2004, 24(3/4): 173−190.
    [39]
    Zhou Peng, Li Dongmei, Zhao Li, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018, 131: 163−173. doi: 10.1016/j.marpolbul.2018.04.009
    [40]
    陈进兴, 吴世炎, 施纯坦, 等. 南海近海放射性背景值的综合研究[J]. 同位素, 1993, 6(1): 41−46.

    Chen Jinxing, Wu Shiyan, Shi Chuntan, et al. Comprehensive study of radioactive background in the coastal waters of South China Sea area[J]. Journal of Isotopes, 1993, 6(1): 41−46.
    [41]
    Bourlat Y, Millies-Lacroix J, Le Petit G, et al. 90Sr, 137Cs and 239, 240Pu in world ocean water samples collected from 1992 to 1994[M]//Guegueniat P, Germain P, Metivier H. Radionuclides in the Oceans. Input and Inventories. Les Ulis: Les editions de Physique, 1996: 75−93.
    [42]
    Karube Z I, Inuzuka Y, Tanaka A, et al. Radiostrontium monitoring of bivalves from the Pacific coast of eastern Japan[J]. Environmental Science and Pollution Research, 2016, 23(17): 17095−17104. doi: 10.1007/s11356-016-6878-8
    [43]
    Tazoe H, Yamagata T, Tsujita K, et al. Observation of dispersion in the Japanese coastal area of released 90Sr, 134Cs, and 137Cs from the Fukushima Daiichi Nuclear Power Plant to the Sea in 2013[J]. International Journal of Environmental Research and Public Health, 2019, 16(21): 4094. doi: 10.3390/ijerph16214094
    [44]
    Tazoe H, Obata H, Yamagata T, et al. Determination of strontium-90 from direct separation of yttrium-90 by solid phase extraction using DGA resin for seawater monitoring[J]. Talanta, 2016, 152: 219−227. doi: 10.1016/j.talanta.2016.01.065
    [45]
    IAEA. Interlaboratory Comparisons 2014−2016: Determination of Radionuclides in Sea Water, Sediment and Fish[M]. Vienna: IAEA, 2019.
    [46]
    Cigna A A. Forty years of anthropogenic radionuclides in surface seawater. Italian and Japanese data[J]. Ocean Science Journal, 2006, 41(4): 261−290. doi: 10.1007/BF03020630
    [47]
    de Villiers S. Seawater strontium and Sr/Ca variability in the Atlantic and Pacific oceans[J]. Earth and Planetary Science Letters, 1999, 171(4): 623−634. doi: 10.1016/S0012-821X(99)00174-0
    [48]
    Saniewski M, Zalewska T. Budget of 90Sr in the Gulf of Gdańsk (southern Baltic Sea)[J]. Oceanologia, 2018, 60(3): 256−263. doi: 10.1016/j.oceano.2017.11.002
    [49]
    Japan Coast Guard. Annual Reports of Radioactivity Survey for 1999−2018[EB/OL]. [2019-10-28]. https://www1.kaiho.mlit.go.jp/KANKYO/OSEN/housha.html.
    [50]
    林武辉, 余克服, 王英辉, 等. 海洋沉积过程的铀系放射性核素示踪技术: 物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2020, 40(1): 60−70.

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Using uranium-series radionuclides as tools for tracing marine sedimentary processes: Source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2020, 40(1): 60−70.
    [51]
    Lin Wuhui, Feng Yu, Yu Kefu, et al. Long-lived radionuclides in marine sediments from the Beibu Gulf, South China Sea: Spatial distribution, controlling factors, and proxy for transport pathway[J]. Marine Geology, 2020, 424: 106157. doi: 10.1016/j.margeo.2020.106157
    [52]
    Lin Wuhui, Chen Liqi, Zeng Shi, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean[J]. Scientific Reports, 2016, 6: 27069. doi: 10.1038/srep27069
    [53]
    Wang Cuiyu, Baumann Z, Madigan D J, et al. Contaminated marine sediments as a source of cesium radioisotopes for benthic fauna near fukushima[J]. Environmental Science & Technology, 2016, 50(19): 10448−10455.
    [54]
    Maderich V, Jung K T, Bezhenar R, et al. Dispersion and fate of 90Sr in the northwestern Pacific and adjacent seas: Global fallout and the Fukushima Dai-ichi accident[J]. Science of the Total Environment, 2014, 494−495: 261−271. doi: 10.1016/j.scitotenv.2014.06.136
    [55]
    Takata H, Kusakabe M, Inatomi N, et al. The contribution of sources to the sustained elevated inventory of 137Cs in offshore waters east of Japan after the Fukushima Dai-ichi Nuclear Power Station accident[J]. Environmental Science & Technology, 2016, 50(13): 6957−6963.
    [56]
    Zalewska T, Suplińska M. Anthropogenic radionuclides 137Cs and 90Sr in the southern Baltic Sea ecosystem[J]. Oceanologia, 2013, 55(3): 485−517. doi: 10.5697/oc.55-3.485
    [57]
    Fujimoto K, Miki S, Kaeriyama H, et al. Use of otolith for detecting strontium-90 in fish from the harbor of Fukushima Dai-ichi Nuclear Power Plant[J]. Environmental Science & Technology, 2015, 49(12): 7294−7301.
    [58]
    Miura T, Minai Y, Yonezawa C, et al. Preparation and certification of certified reference materials of fish meat and ashed bone for determination of 90Sr and radiocesium after Fukushima Daiichi Nuclear Power Plant[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318(1): 347−352. doi: 10.1007/s10967-018-6028-5
    [59]
    Zalewska T, Saniewski M, Suplińska M, et al. 90Sr in fish from the southern Baltic Sea, coastal lagoons and freshwater lake[J]. Journal of Environmental Radioactivity, 2016, 158−159: 38−46. doi: 10.1016/j.jenvrad.2016.03.024
    [60]
    Brown J E, Alfonso B, Avila R, et al. A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals[J]. Journal of Environmental Radioactivity, 2016, 153: 141−148. doi: 10.1016/j.jenvrad.2015.12.011
    [61]
    Garnier-Laplace J, Copplestone D, Gilbin R, et al. Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach[J]. Journal of Environmental Radioactivity, 2008, 99(9): 1474−1483. doi: 10.1016/j.jenvrad.2008.04.012
    [62]
    Lin Wuhui, Feng Yu, Yu Kefu, et al. Comparative study of radioactivity levels and radionuclide fingerprints in typical marine ecosystems of coral reefs, mangroves, and hydrothermal vents[J]. Marine Pollution Bulletin, 2020, 152: 110913. doi: 10.1016/j.marpolbul.2020.110913
    [63]
    Deng Fangfang, Lin Feng, Yu Wen, et al. The distributions of 134Cs, 137Cs and 90Sr in the northwest Pacific seawater in the winter of 2012[J]. Marine Pollution Bulletin, 2020, 152: 110900. doi: 10.1016/j.marpolbul.2020.110900
    [64]
    Inoue M, Shirotani Y, Nagao S, et al. Spatial variations of 226Ra, 228Ra, 134Cs, and 137Cs concentrations in western and southern waters off the Korean Peninsula in July 2014[J]. Journal of Environmental Radioactivity, 2018, 182: 151−156. doi: 10.1016/j.jenvrad.2017.11.020
    [65]
    Inoue M, Shirotani Y, Yamashita S, et al. Temporal and spatial variations of 134Cs and 137Cs levels in the Sea of Japan and Pacific coastal region: Implications for dispersion of FDNPP-derived radiocesium[J]. Journal of Environmental Radioactivity, 2018, 182: 142−150. doi: 10.1016/j.jenvrad.2017.11.032
    [66]
    Men Wu, He Jianhua, Wang Fenfen, et al. Radioactive status of seawater in the Northwest Pacific more than one year after the Fukushima nuclear accident[J]. Scientific Reports, 2015, 5: 7757. doi: 10.1038/srep07757
    [67]
    Hirose K, Povinec P P. 137Cs and 90Sr in surface waters of the Sea of Japan: Variations and the Fukushima Dai-ichi Nuclear Power Plant accident impact[J]. Marine Pollution Bulletin, 2019, 146: 645−652. doi: 10.1016/j.marpolbul.2019.07.024
    [68]
    Ikeuchi Y. Temporal variations and behaviour of 90Sr and 137Cs in precipitation, river water and seawater in Japan[J]. Radioactivity in the Environment, 2006, 8: 397−405. doi: 10.1016/S1569-4860(05)08032-0
    [69]
    中华人民共和国生态环境部. 全国辐射环境质量报告[R]. 北京: 生态环境部, 2014−2018.

    Ministry of Ecology and Environment of the People’s Republic of China. Annual Report of the National Radiation Environment[R]. Beijing: Ministry of Ecology and Environment, 2014−2018.
    [70]
    Zhang Zijian, Ninomiya K, Yamaguchi Y, et al. Atmospheric activity concentration of 90Sr and 137Cs after the Fukushima Daiichi nuclear accident[J]. Environmental Science & Technology, 2018, 52(17): 9917−9925.
    [71]
    Rosenberg B L, Ball J E, Shozugawa K, et al. Radionuclide pollution inside the Fukushima Daiichi exclusion zone, part 1: Depth profiles of radiocesium and strontium-90 in soil[J]. Applied Geochemistry, 2017, 85: 201−208. doi: 10.1016/j.apgeochem.2017.06.003
    [72]
    Sahoo S K, Kavasi N, Sorimachi A, et al. Strontium-90 activity concentration in soil samples from the exclusion zone of the Fukushima Daiichi Nuclear Power Plant[J]. Scientific Reports, 2016, 6: 23925. doi: 10.1038/srep23925
    [73]
    Konno M, Takagai Y. Determination and comparison of the strontium-90 concentrations in topsoil of Fukushima prefecture before and after the Fukushima Daiichi nuclear accident[J]. ACS Omega, 2018, 3(12): 18028−18038. doi: 10.1021/acsomega.8b02640
    [74]
    Amano H, Sakamoto H, Shiga N, et al. Method for rapid screening analysis of Sr-90 in edible plant samples collected near Fukushima, Japan[J]. Applied Radiation and Isotopes, 2016, 112: 131−135. doi: 10.1016/j.apradiso.2016.03.026
    [75]
    Koarai K, Kino Y, Takahashi A, et al. 90Sr in teeth of cattle abandoned in evacuation zone: Record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident[J]. Scientific Reports, 2016, 6: 24077. doi: 10.1038/srep24077
    [76]
    Merz S, Shozugawa K, Steinhauser G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident[J]. Environmental Science & Technology, 2015, 49(5): 2875−2885.
    [77]
    Nabeshi H, Tsutsumi T, Uekusa Y, et al. Surveillance of strontium-90 in foods after the fukushima daiichi nuclear power plant accident[J]. Shokuhin Eiseigaku Zasshi, 2015, 56(4): 133−143. doi: 10.3358/shokueishi.56.133
    [78]
    Koarai K, Kino Y, Takahashi A, et al. 90Sr specific activity of teeth of abandoned cattle after the Fukushima accident—teeth as an indicator of environmental pollution[J]. Journal of Environmental Radioactivity, 2018, 183: 1−6. doi: 10.1016/j.jenvrad.2017.12.005
    [79]
    林武辉, 余克服, 邓芳芳, 等. 南海现代珊瑚骨骼中放射性核素特征指纹[J]. 中国环境科学, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030

    Lin Wuhui, Yu Kefu, Deng Fangfang, et al. Fingerprints of radionuclides in modern coral skeletons in the South China Sea[J]. China Environmental Science, 2019, 39(10): 4279−4289. doi: 10.3969/j.issn.1000-6923.2019.10.030
    [80]
    Dissard D, Nehrke G, Jan Reichart G, et al. The impact of salinity on the Mg/Ca and Sr/Ca ratio in the benthic foraminifera Ammonia tepida: Results from culture experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 928−940. doi: 10.1016/j.gca.2009.10.040
    [81]
    Stoll H M, Rosenthal Y, Falkowski P. Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi[J]. Geochimica et Cosmochimica Acta, 2002, 66(6): 927−936. doi: 10.1016/S0016-7037(01)00836-5
    [82]
    Gillikin D P, Lorrain A, Navez J, et al. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(5): Q05009.
    [83]
    DiMaria R A, Miller J A, Hurst T P. Temperature and growth effects on otolith elemental chemistry of larval Pacific cod, Gadus macrocephalus[J]. Environmental Biology of Fishes, 2010, 89(3/4): 453−462.
    [84]
    Delaney M L, Linn L J, Davies P J. Trace and minor element ratios in Halimeda aragonite from the Great Barrier Reef[J]. Coral Reefs, 1996, 15(3): 181−189.
    [85]
    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019, 142: 43−53. doi: 10.1016/j.marpolbul.2019.03.030
    [86]
    林武辉, 余克服, 王英辉, 等. 珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101

    Lin Wuhui, Yu Kefu, Wang Yinghui, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018, 63(21): 2173−2183. doi: 10.1360/N972017-01101
    [87]
    Sun Y, Sun M, Lee T, et al. Influence of seawater Sr content on coral Sr/Ca and Sr thermometry[J]. Coral Reefs, 2005, 24(1): 23−29. doi: 10.1007/s00338-004-0467-x
    [88]
    Yu Kefu. Coral reefs in the South China Sea: Their response to and records on past environmental changes[J]. Science China: Earth Sciences, 2012, 55(8): 1217−1229. doi: 10.1007/s11430-012-4449-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(5)

    Article views (451) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return