Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 10
Nov.  2020
Turn off MathJax
Article Contents
Wang Yali,Zhang Fenfen,Chen Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao,2020, 42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004
Citation: Wang Yali,Zhang Fenfen,Chen Xiaogang, et al. Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi[J]. Haiyang Xuebao,2020, 42(10):37–46 doi: 10.3969/j.issn.0253-4193.2020.10.004

Influence of submarine groundwater discharge in the blue carbon budget of typical mangrove: A case study from the Zhenzhu Bay, Guangxi

doi: 10.3969/j.issn.0253-4193.2020.10.004
  • Received Date: 2020-01-09
  • Rev Recd Date: 2020-02-13
  • Available Online: 2020-11-13
  • Publish Date: 2020-10-25
  • As one of the forms of land-ocean interactions, submarine groundwater discharge (SGD) can release solutes into the coastal sea and has a significant impact on the nutrients budget in coastal seawater. Here, using 222Rn tracer, the SGD and the associated dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) inputted to the Zhenzhu Bay, a typical mangrove-dominated bay, were quantified. The results show that the average concentrations of 222Rn, DIC and DOC in groundwater are relatively higher than those in river water and surface sea water. A 222Rn mass balance implies that SGD rate is (0.36±0.36) m/d during January 2019. And SGD-derived DIC and DOC fluxes are estimated to be (2.41±2.63)×107 mol/d and (1.96±2.20)×106 mol/d. It confirmed that SGD-derived carbon is the most important carbon source in this bay, with 91% DIC and 89% DOC of the total input fluxes by SGD, respectively. Our results highlight the importance of groundwater-derived carbon fluxes in the Zhenzhu Bay, especially in the blue carbon assessments and biogeochemical process in tidal zones such as mangrove ecosystems.
  • loading
  • [1]
    Mcleod E, Chmura G L, Bouillon S, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Frontiers in Ecology and the Environment, 2011, 9(10): 552−560. doi: 10.1890/110004
    [2]
    Bouillon S, Borges A V, Castañeda-Moya E, et al. Mangrove production and carbon sinks: a revision of global budget estimates[J]. Global Biogeochemical Cycles, 2008, 22(2): GB2013.
    [3]
    Tait D R, Maher D T, Macklin P A, et al. Mangrove pore water exchange across a latitudinal gradient[J]. Geophysical Research Letters, 2016, 43(7): 3334−3341. doi: 10.1002/2016GL068289
    [4]
    Sippo J Z, Maher D T, Tait D R, et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon[J]. Limnology and Oceanography Letters, 2017, 2(1): 1−8. doi: 10.1002/lol2.10031
    [5]
    Alongi D M. Carbon cycling and storage in mangrove forests[J]. Annual Review of Marine Science, 2014, 6(1): 195−219. doi: 10.1146/annurev-marine-010213-135020
    [6]
    Kelleway J J, Saintilan N, Macreadie P I, et al. Sedimentary factors are key predictors of carbon storage in SE Australian saltmarshes[J]. Ecosystems, 2016, 19(5): 865−880. doi: 10.1007/s10021-016-9972-3
    [7]
    Maher D T, Santos I R, Golsby-Smith L, et al. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: the missing mangrove carbon sink?[J]. Limnology and Oceanography, 2013, 58(2): 475−488. doi: 10.4319/lo.2013.58.2.0475
    [8]
    Chen Xiaogang, Zhang Fenfen, Lao Yanling, et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: an important component of blue carbon budgets?[J]. Journal of Geophysical Research: Oceans, 2018, 123(9): 6962−6979. doi: 10.1029/2018JC014448
    [9]
    Burnett W C, Bokuniewicz H, Huettel M, et al. Groundwater and pore water inputs to the coastal zone[J]. Biogeochemistry, 2003, 66(1/2): 3−33. doi: 10.1023/B:BIOG.0000006066.21240.53
    [10]
    Moore W S. The effect of submarine groundwater discharge on the ocean[J]. Annual Review of Marine Science, 2010, 2: 59−88. doi: 10.1146/annurev-marine-120308-081019
    [11]
    Wang Guizhi, Wang Zhangyong, Zhai Weidong, et al. Net subterranean estuarine export fluxes of dissolved inorganic C, N, P, Si, and total alkalinity into the Jiulong River Estuary, China[J]. Geochimica et Cosmochimica Acta, 2015, 149: 103−114. doi: 10.1016/j.gca.2014.11.001
    [12]
    Santos I R, Beck M, Brumsack H J, et al. Porewater exchange as a driver of carbon dynamics across a terrestrial-marine transect: Insights from coupled 222Rn and pCO2 observations in the German Wadden Sea[J]. Marine Chemistry, 2015, 171: 10−20. doi: 10.1016/j.marchem.2015.02.005
    [13]
    Chen Xiaogang, Ye Qi, Du Jinzhou, et al. Bacterial and archaeal assemblages from two size fractions in submarine groundwater near an industrial zone[J]. Water, 2019, 11(6): 1261. doi: 10.3390/w11061261
    [14]
    Stewart B T, Santos I R, Tait D R, et al. Submarine groundwater discharge and associated fluxes of alkalinity and dissolved carbon into Moreton Bay (Australia) estimated via radium isotopes[J]. Marine Chemistry, 2015, 174: 1−12. doi: 10.1016/j.marchem.2015.03.019
    [15]
    Sadat-Noori M, Maher D T, Santos I R. Groundwater discharge as a source of dissolved carbon and greenhouse gases in a subtropical estuary[J]. Estuaries and Coasts, 2016, 39(3): 639−656. doi: 10.1007/s12237-015-0042-4
    [16]
    Faber P A, Evrard V, Woodland R J, et al. Pore-water exchange driven by tidal pumping causes alkalinity export in two intertidal inlets[J]. Limnology and Oceanography, 2014, 59(5): 1749−1763. doi: 10.4319/lo.2014.59.5.1749
    [17]
    Oh Y H, Lee Y W, Park S R, et al. Importance of dissolved organic carbon flux through submarine groundwater discharge to the coastal ocean: results from Masan Bay, the southern coast of Korea[J]. Journal of Marine Systems, 2017, 173: 43−48. doi: 10.1016/j.jmarsys.2017.03.013
    [18]
    Wang Xilong, Du Jinzhou. Submarine groundwater discharge into typical tropical lagoons: a case study in Eastern Hainan Island, China[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4366−4382. doi: 10.1002/2016GC006502
    [19]
    Xiao Kai, Li Hailong, Shananan M, et al. Coastal water quality assessment and groundwater transport in a subtropical mangrove swamp in Daya Bay, China[J]. Science of the Total Environment, 2019, 646: 1419−1432. doi: 10.1016/j.scitotenv.2018.07.394
    [20]
    Chen Xiaogang, Lao Yanling, Wang Jinlong, et al. Submarine groundwater-borne nutrients in a tropical bay (Maowei Sea, China) and their impacts on the oyster aquaculture[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(3): 932−951. doi: 10.1002/2017GC007330
    [21]
    赖廷和, 何斌源, 史小芳, 等. 广西珍珠湾桐花树群落凋落物碳输出动态研究[J]. 泉州师范学院学报, 2015, 33(6): 1−7. doi: 10.3969/j.issn.1009-8224.2015.06.001

    Lai Tinghe, He Binyuan, Shi Xiaofang, et al. Carbon output through litter fall in the Aegiceras corniculatum mangrove community in Zhenzhu Bay of Guangxi, China[J]. Journal of Quanzhou Normal University, 2015, 33(6): 1−7. doi: 10.3969/j.issn.1009-8224.2015.06.001
    [22]
    黄玥, 黄元辉. 广西珍珠湾表层沉积硅藻分布特征[J]. 海洋科学进展, 2016, 34(3): 411−420.

    Huang Yue, Huang Yuanhui. Characterastics of surface sediments diatom distribution in Zhenzhu Bay of Guangxi[J]. Advances in Marine Science, 2016, 34(3): 411−420.
    [23]
    Schubert M, Paschke A, Lieberman E, et al. Air-water partitioning of 222Rn and its dependence on water temperature and salinity[J]. Environmental Science & Technology, 2012, 46(7): 3905−3911.
    [24]
    Charette M A, Allen M C. Precision ground water sampling in coastal aquifers using a direct-push, Shielded-Screen Well-Point System[J]. Groundwater Monitoring & Remediation, 2006, 26(2): 87−93.
    [25]
    Moore W S, Arnold R. Measurement of 223Ra and 224Ra in coastal waters using a delayed coincidence counter[J]. Journal of Geophysical Research: Oceans, 1996, 101(C1): 1321−1329. doi: 10.1029/95JC03139
    [26]
    Peterson R N, Burnett W C, Glenn C R, et al. Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii[J]. Limnology and Oceanography, 2009, 54(3): 890−904. doi: 10.4319/lo.2009.54.3.0890
    [27]
    Martens C S, Kipphut G W, Klump J V. Sediment-water chemical exchange in the coastal zone traced by in situ radon-222 flux measurements[J]. Science, 1980, 208(4441): 285−288. doi: 10.1126/science.208.4441.285
    [28]
    Burnett W C, Dulaiova H. Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements[J]. Journal of Environmental Radioactivity, 2003, 69(1/2): 21−35.
    [29]
    Zhang Yan, Li Hailong, Wang Xuejing, et al. Estimation of submarine groundwater discharge and associated nutrient fluxes in eastern Laizhou Bay, China using 222Rn[J]. Journal of Hydrology, 2016, 533: 103−113. doi: 10.1016/j.jhydrol.2015.11.027
    [30]
    Santos I R, Maher D T, Larkin R, et al. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands[J]. Limnology and Oceanography, 2019, 64(3): 996−1013. doi: 10.1002/lno.11090
    [31]
    杨卫东. 广西北部湾经济区水资源及其变化趋势分析[C]//第五届广西青年学术年会论文集. 南宁: 广西壮族自治区科协, 2010.

    Yang Weidong. Analysis of water resources and its Changing trend in economic zone of Beibu Gulf, Guangxi[C]//The Fifth Guangxi Youth Academic Conference. Nanning: Guangxi Association for Science and Technology, 2010.
    [32]
    Moore W S, Blanton J O, Joye S B. Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina[J]. Journal of Geophysical Research: Oceans, 2006, 111(C9): C09006.
    [33]
    罗浩. 镭同位素示踪钦州湾海底地下水排放及其营养盐输送通量[D]. 上海: 华东师范大学, 2018.

    Luo Hao. Study of submarine groundwater discharge by Ra and its associated nutrient fluxes into the Qinzhou Bay, China[D]. Shanghai: East China Normal University, 2018.
    [34]
    MacIntyre S, Wanninkhof R, Chanton J P. Trace gas exchange across the air-water interface in freshwater and coastal marine environments[C]//Matson P A, Harriss R C. Biogenic Trace Gases: Measuring Emissions from Soil and Water. Oxford, England: Blackwell, 1995.
    [35]
    Lambert M J, Burnett W C. Submarine groundwater discharge estimates at a Florida coastal site based on continuous radon measurements[J]. Biogeochemistry, 2003, 66(1/2): 55−73. doi: 10.1023/B:BIOG.0000006057.63478.fa
    [36]
    Corbett D R, Burnett W C, Cable P H, et al. A multiple approach to the determination of radon fluxes from sediments[J]. Journal of Radioanalytical and Nuclear Chemistry, 1998, 236(1/2): 247−253.
    [37]
    Burnett W C, Peterson R, Moore W S, et al. Radon and radium isotopes as tracers of submarine groundwater discharge—results from the Ubatuba, Brazil SGD assessment intercomparison[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 501−511. doi: 10.1016/j.ecss.2007.07.027
    [38]
    Tse K C, Jiao J J. Estimation of submarine groundwater discharge in plover cove, Tolo harbour, Hong Kong by 222Rn[J]. Marine Chemistry, 2008, 111(3/4): 160−170.
    [39]
    Wang Xuejing, Li Hailong, Yang Jinzhong, et al. Nutrient inputs through submarine groundwater discharge in an embayment: a radon investigation in Daya Bay, China[J]. Journal of Hydrology, 2017, 551: 784−792. doi: 10.1016/j.jhydrol.2017.02.036
    [40]
    Taillardat P, Willemsen P, Marchand C, et al. Assessing the contribution of porewater discharge in carbon export and CO2 evasion in a mangrove tidal creek (Can Gio, Vietnam)[J]. Journal of Hydrology, 2018, 563: 303−318. doi: 10.1016/j.jhydrol.2018.05.042
    [41]
    Call M, Sanders C J, Macklin P A, et al. Carbon outwelling and emissions from two contrasting mangrove creeks during the monsoon storm season in Palau, Micronesia[J]. Estuarine, Coastal and Shelf Science, 2019, 218: 340−348. doi: 10.1016/j.ecss.2019.01.002
    [42]
    Tait D R, Maher D T, Sanders C J, et al. Radium-derived porewater exchange and dissolved N and P fluxes in mangroves[J]. Geochimica et Cosmochimica Acta, 2017, 200: 295−309. doi: 10.1016/j.gca.2016.12.024
    [43]
    Robinson C E, Xin Pei, Santos I R, et al. Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean[J]. Advances in Water Resources, 2018, 115: 315−331. doi: 10.1016/j.advwatres.2017.10.041
    [44]
    Bokuniewicz H, Taniguchi M, Ishitoibi T, et al. Direct measurements of submarine groundwater discharge (SGD) over a fractured rock aquifer in Flamengo Bay Brazil[J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 466−472. doi: 10.1016/j.ecss.2007.07.047
    [45]
    Santos I R, Lechuga-Deveze C, Peterson R N, et al. Tracing submarine hydrothermal inputs into a coastal bay in Baja California using radon[J]. Chemical Geology, 2011, 282(1/2): 1−10.
    [46]
    Gordon D C, Boudreau P R, Mann K H, et al. LOICZ Biogeochemical Modelling Guidelines[M]. Texel, the Netherlands: LOICZ, 1996.
    [47]
    Jiang Zengjie, Li Jiaqi, Qiao Xudong, et al. The budget of dissolved inorganic carbon in the shellfish and seaweed integrated mariculture area of Sanggou Bay, Shandong, China[J]. Aquaculture, 2015, 446: 167−174. doi: 10.1016/j.aquaculture.2014.12.043
    [48]
    吴易超. 北部湾初级生产力的时空格局与粒级结构[D]. 厦门: 厦门大学, 2008.

    Wu Yichao. The temporal and spatial distribution patterns and size-fractioned structure of primary productivity in Beibu Gulf[D]. Xiamen: Xiamen University, 2008.
    [49]
    Sanford L P, Boicourt W C, Rives S R. Model for estimating tidal flushing of small embayments[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1992, 118(6): 635−654. doi: 10.1061/(ASCE)0733-950X(1992)118:6(635)
    [50]
    Zhai Weidong, Dai Minhan, Cai Weijun, et al. The partial pressure of carbon dioxide and air-sea fluxes in the northern South China Sea in spring, summer and autumn[J]. Marine Chemistry, 2005, 96(1/2): 87−97.
    [51]
    Bauer J E, Cai Weijun, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478): 61−70. doi: 10.1038/nature12857
    [52]
    周晨昊, 毛覃愉, 徐晓, 等. 中国海岸带蓝碳生态系统碳汇潜力的初步分析[J]. 中国科学: 生命科学, 2016, 46(4): 475−486. doi: 10.1360/N052016-00105

    Zhou Chenhao, Mao Qinyu, Xu Xiao, et al. Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone[J]. Scientia Sinica Vitae, 2016, 46(4): 475−486. doi: 10.1360/N052016-00105
    [53]
    章海波, 骆永明, 刘兴华, 等. 海岸带蓝碳研究及其展望[J]. 中国科学: 地球科学, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641

    Zhang Haibo, Luo Yongming, Liu Xinghua, et al. Current researches and prospects on the coastal blue carbon[J]. Scientia Sinica: Terrae, 2015, 45(11): 1641−1648. doi: 10.1360/zd2015-45-11-1641
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (351) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return