Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
Luo Li,Liu Shuxue,Li Jinxuan, et al. Deterministic simulation of multidirectional irregular waves[J]. Haiyang Xuebao,2020, 42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009
Citation: Luo Li,Liu Shuxue,Li Jinxuan, et al. Deterministic simulation of multidirectional irregular waves[J]. Haiyang Xuebao,2020, 42(9):79–86 doi: 10.3969/j.issn.0253-4193.2020.09.009

Deterministic simulation of multidirectional irregular waves

doi: 10.3969/j.issn.0253-4193.2020.09.009
  • Received Date: 2019-08-29
  • Rev Recd Date: 2020-06-05
  • Available Online: 2021-04-21
  • Publish Date: 2020-09-25
  • The simulation of wave time series or wave elevation histories is of great significance for the accurate study of real wave-action on marine structures. In this paper, a method of simulating multi-directional irregular wave elevations is proposed based on a linear single-summation model. To evaluate the effectiveness of the proposed method, theoretical simulated regular waves, unidirectional and multidirectional irregular waves are deterministically simulated. The consistence between the simulated wave time series and the original ones is verified. The simulated accuracy range is further evaluated based on the quantitative error analysis along the spatial dimension represented by the ratio of rr/Ls (in which, rr denotes the separations of the two wave gauges, and Ls dotes the significant wave length). It is suggested that the optimum relative separations of the wave gauges should be less than 0.12Ls when the proposed method is used to reconstruct multidirectional irregular waves.
  • loading
  • [1]
    Baldock T E, Swan C. Numerical calculations of large transient water waves[J]. Applied Ocean Research, 1994, 16(2): 101−112. doi: 10.1016/0141-1187(94)90006-X
    [2]
    裴玉国, 张宁川, 张运秋. 畸形波数值模拟和定点生成[J]. 海洋工程, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004

    Pei Yuguo, Zhang Ningchuan, Zhang Yunqiu. Numerical simulation of freak waves and its generation at a certain location[J]. The Ocean Engineering, 2006, 24(4): 20−26. doi: 10.3969/j.issn.1005-9865.2006.04.004
    [3]
    Liang Xiufeng, Yang JianMin, Li Jun, et al. Numerical simulation of irregular wave-simulating irregular wave train[J]. Journal of Hydrodynamics, 2010, 22(4): 537−545. doi: 10.1016/S1001-6058(09)60086-X
    [4]
    崔成, 张宁川, 裴玉国. 畸形波生成、演化过程研究——波面时间过程随位置的变化[J]. 海洋通报, 2011, 30(4): 387−396. doi: 10.3969/j.issn.1001-6392.2011.04.005

    Cui Cheng, Zhang Ningchuan, Pei Yuguo. Research on the generation and evolution of freak wave−time-process of the water surface elevations’ variation with positions[J]. Marine Science Bulletin, 2011, 30(4): 387−396. doi: 10.3969/j.issn.1001-6392.2011.04.005
    [5]
    Finnegan W, Goggins J. Linear irregular wave generation in a numerical wave tank[J]. Applied Ocean Research, 2015, 52: 188−200. doi: 10.1016/j.apor.2015.06.006
    [6]
    沈王刚. 基于FMBEM的数值波浪水池及非线性波浪重构方法[D]. 上海: 上海交通大学, 2018.

    Shen Wanggang. Fmbem-based numerical wave tank and nonlinear wave refactoring method[D]. Shanghai: Shanghai Jiao Tong University, 2018.
    [7]
    Naaijen P, Blondel-Couprie E. Reconstruction and prediction of short-crested seas based on the application of a 3d-FFT on synthetic waves: Part 1-Reconstruction[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: American Society of Mechanical Engineers (ASME), 2012.
    [8]
    Blondel-Couprie E, Naaijen P. Reconstruction and prediction of short-crested seas based on the application of a 3D-FFT on synthetic waves: Part 2-Prediction[C]//ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. Rio de Janeiro, Brazil: American Society of Mechanical Engineers (ASME), 2012.
    [9]
    刘思. 多向不规则波群的模拟研究[D]. 大连: 大连理工大学, 2012.

    Liu Si. The research on simulation of multidirectional irregular wave groups[D]. Dalian: Dalian University of Technology, 2012.
    [10]
    俞聿修, 柳淑学. 随机波浪及其工程应用[M]. 4版. 大连: 大连理工大学出版社, 2011.

    Yu Yuxiu, Liu Shuxue. Random Wave and its Applications to Engineering[M]. 4th ed. Dalian: Dalian University of Technology Press, 2011.
    [11]
    Draycott S, Davey T, Ingram D M, et al. The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins[J]. Coastal Engineering, 2016, 114: 265−283. doi: 10.1016/j.coastaleng.2016.04.012
    [12]
    Luo L, Liu S, Li J, et al. The deterministic reconstruction of multi-directional irregular waves[C]//Proceedings of the Twenty-ninth (2019) International Ocean and Polar Engineering Conference. Honolulu, Hawaii, USA: ISOPE, 2019 (3): 3546–3552.
    [13]
    Borgman L E. Statistical reliability of computations based on wave spectral relations[C]// Proceedings of the International Symposium on Ocean Wave Measurement and Analysis. New York: ASCE, 1974: 362–378.
    [14]
    Esteva D. Wave direction computations with three gage arrays[J]. Coastal Engineering Proceedings, 1976, 1(15): 19. doi: 10.9753/icce.v15.19
    [15]
    Fernandes A A, Gouveia A D, Nagarajan R. Determination of wave direction from linear and polygonal arrays[J]. Ocean Engineering, 1988, 15(4): 345−357. doi: 10.1016/0029-8018(88)90050-9
    [16]
    Fernandes A A, Sarma Y V B, Menon H B. Directional spectrum of ocean waves from array measurements using phase/time/path difference methods[J]. Ocean Engineering, 2000, 27(4): 345−363. doi: 10.1016/S0029-8018(99)00024-4
    [17]
    Goda Y. A comparative review on the functional forms of directional wave spectrum[J]. Coastal Engineering Journal, 1999, 41(1): 1−20. doi: 10.1142/S0578563499000024
    [18]
    孙忠滨, 柳淑学, 李金宣. 基于改进Boussinesq方程三角形网格有限元模型[J]. 海洋工程, 2010, 28(3): 50−58, 67. doi: 10.3969/j.issn.1005-9865.2010.03.008

    Sun Zhongbin, Liu Shuxue, Li Jinxuan. Triangular element FEM model based on modified Boussinesq equations[J]. The Ocean Engineering, 2010, 28(3): 50−58, 67. doi: 10.3969/j.issn.1005-9865.2010.03.008
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views (158) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return