Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 9
Nov.  2020
Turn off MathJax
Article Contents
Fan Qingkai,Li Jianghai. Study on the influence of bathymetry on hydrothermal convection under mid-ocean ridges: Based on the spatial variation of overlying pressure of seawater[J]. Haiyang Xuebao,2020, 42(9):61–68 doi: 10.3969/j.issn.0253-4193.2020.09.007
Citation: Fan Qingkai,Li Jianghai. Study on the influence of bathymetry on hydrothermal convection under mid-ocean ridges: Based on the spatial variation of overlying pressure of seawater[J]. Haiyang Xuebao,2020, 42(9):61–68 doi: 10.3969/j.issn.0253-4193.2020.09.007

Study on the influence of bathymetry on hydrothermal convection under mid-ocean ridges: Based on the spatial variation of overlying pressure of seawater

doi: 10.3969/j.issn.0253-4193.2020.09.007
  • Received Date: 2019-07-02
  • Rev Recd Date: 2019-12-09
  • Available Online: 2021-04-21
  • Publish Date: 2020-09-25
  • Hydrothermal venting systems mostly develop on the localized bathymetric highs of mid-ocean ridges with different spreading rates, and porous-elastic thermodynamic numerical models, which is filled with Darcian fluid can intuitively model the geometry, temperature structure and venting location of the hydrothermal systems in oceanic crust. Simulation results and the experimental-analytical model reveal that bathymetric highs with different sizes show a varied influence on the geometry of hydrothermal convection, the greater and wider bathymetric highs, the greater deflection of underlying plume to the bathymetric highs. Adopting the cross-axis bathymetry of the EPR 9°17′N and Lucky Strike hydrothermal fields into the model, our simulations produce vents fitting the realistic location of these two fields well. Finally, our schematic model for bathymetric relief deflecting underlying plumes indicates that the lower bathymetry and its underlying porous oceanic crust act as the main recharge zone, while the bathymetric high focuses the most of the discharge hot fluid due to the reduce of the overlying pressure of seawater.
  • loading
  • [1]
    Stein C A, Stein S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B2): 3081−3095. doi: 10.1029/93JB02222
    [2]
    Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 191−224. doi: 10.1146/annurev.earth.24.1.191
    [3]
    Morgan J P, Chen Y J. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6283−6297. doi: 10.1029/92JB02650
    [4]
    Lowell R P, Germanovich L N. Hydrothermal processes at mid-ocean ridges: results from scale analysis and single-pass models[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004, 148: 219−244.
    [5]
    Lowell R P, Gosnell S, Yang Y. Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: effects of the extrusive layer and temperature-dependent permeability[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10): Q10011.
    [6]
    Lowell R P, Farough A, Hoover J, et al. Characteristics of magma-driven hydrothermal systems at oceanic spreading centers[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6): 1756−1770. doi: 10.1002/ggge.20109
    [7]
    Coumou D, Driesner T, Geiger S, et al. The dynamics of mid-ocean ridge hydrothermal systems: splitting plumes and fluctuating vent temperatures[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 218−231.
    [8]
    Coumou D, Driesner T, Heinrich C A. The structure and dynamics of mid-ocean ridge hydrothermal systems[J]. Science, 2008, 321(5897): 1825−1828. doi: 10.1126/science.1159582
    [9]
    Driesner T. The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and venting salinities at mid-ocean ridge hydrothermal systems[J]. Geofluids, 2010, 10(1/2): 132−141.
    [10]
    German C R, Baker E T, Mevel C, et al. Hydrothermal activity along the southwest Indian Ridge[J]. Nature, 1998, 395(6701): 490−493. doi: 10.1038/26730
    [11]
    Lowell R P. Topographically driven subcritical hydrothermal convection in the oceanic crust[J]. Earth and Planetary Science Letters, 1980, 49(1): 21−28. doi: 10.1016/0012-821X(80)90145-4
    [12]
    Wang H Q, Hsieh Y P, Harwell M A, et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007, 201(3/4): 429−439.
    [13]
    Bani-Hassan N, Iyer K, Rüpke L H, et al. Controls of bathymetric relief on hydrothermal fluid flow at mid-ocean ridges[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05002.
    [14]
    Toomey D R, Purdy G M, Solomon S C, et al. The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9°30′ N[J]. Nature, 1990, 347(6294): 639−645. doi: 10.1038/347639a0
    [15]
    Haymon R M, Fornari D J, Edwards M H, et al. Hydrothermal vent distribution along the East Pacific Rise crest (9°09′–54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 513−534.
    [16]
    Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 69−91.
    [17]
    Singh S C, Crawford W C, Carton H, et al. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field[J]. Nature, 2006, 442(7106): 1029−1032. doi: 10.1038/nature05105
    [18]
    Tolstoy M, Waldhauser F, Bohnenstiehl D R, et al. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise[J]. Nature, 2008, 451(7175): 181−184. doi: 10.1038/nature06424
    [19]
    Crone T J, Wilcock W S D. Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07001.
    [20]
    Beaulieu S E, Baker E T, German C R, et al. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4892−4905. doi: 10.1002/2013GC004998
    [21]
    Ryan W B F, Carbotte S M, Coplan J O, et al. Global multi-resolution topography synthesis[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): Q03014.
    [22]
    Olive J A, Crone T J. Smoke without fire: how long can thermal cracking sustain hydrothermal circulation in the absence of magmatic heat?[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 4561−4581. doi: 10.1029/2017JB014900
    [23]
    Turcotte D L, Schubert G. Geodynamics: Application of Continuum Physics to Geological Problems[M]. New York: John Wiley & Sons, 1982: 22−45.
    [24]
    Pitzer K S, Peiper J C, Busey R H. Thermodynamic properties of aqueous sodium chloride solutions[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 1−102. doi: 10.1063/1.555709
    [25]
    Anderko A, Pitzer K S. Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1657−1680. doi: 10.1016/0016-7037(93)90105-6
    [26]
    Holzbecher E O. Modeling Density-Driven Flow in Porous Media: Principles, Numerics, Software (Vol. 1)[M]. Berlin Heidelberg: Springer, 1998: 213−220.
    [27]
    Fontaine F J, Wilcock W S D. Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt numbers: implications for mid-ocean ridge hydrothermal circulation[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7): Q07010.
    [28]
    Fisher A T. Permeability within basaltic oceanic crust[J]. Reviews of Geophysics, 1998, 36(2): 143−182. doi: 10.1029/97RG02916
    [29]
    Fisher A T. Rates of flow and patterns of fluid circulation[M]//Davis E E, Elderfield H. Hydrogeology of the Oceanic Lithosphere. Cambridge: Cambridge University Press, 2004: 339−377.
    [30]
    Fontaine F J, Olive J A, Cannat M, et al. Hydrothermally-induced melt lens cooling and segmentation along the axis of fast-and intermediate-spreading centers[J]. Geophysical Research Letters, 2011, 38(14): L14307.
    [31]
    Kent G M, Harding A J, Orcutt J A. Distribution of magma beneath the East Pacific Rise between the Clipperton transform and the 9°17′N Deval from forward modeling of common depth point data[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B8): 13945−13969. doi: 10.1029/93JB00705
    [32]
    Van Ark E M, Detrick R S, Canales J P, et al. Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: correlations with seismicity and hydrothermal activity[J]. Journal of Geophysical Research, 2007, 112(B2): B02401.
    [33]
    Rea D K, Scheidegger K F. Eastern Pacific spreading rate fluctuation and its relation to Pacific area volcanic episodes[J]. Journal of volcanology and Geothermal Research, 1979, 5(1/2): 135−148.
    [34]
    Toomey D R, Solomon S C, Purdy G M. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9° 30′ N[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 24135−24157. doi: 10.1029/94JB01942
    [35]
    Shank T M, Fornari D J, Von Damm K L, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′ N, East Pacific Rise)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45(1/3): 465−515.
    [36]
    Baker E T, Chen Y J, Morgan J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1/2): 137−145.
    [37]
    Cannat M, Briais A, Deplus C, et al. Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago[J]. Earth and Planetary Science Letters, 1999, 173(3): 257−269. doi: 10.1016/S0012-821X(99)00234-4
    [38]
    Fouquet Y, Ondréas H, Charlou J L, et al. Atlantic lava lakes and hot vents[J]. Nature, 1995, 377(6546): 201. doi: 10.1038/377201a0
    [39]
    Barreyre T, Olive J A, Crone T J, et al. Depth-dependent permeability and heat output at basalt-hosted hydrothermal systems across mid-ocean ridge spreading rates[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1259−1281. doi: 10.1002/2017GC007152
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (122) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return