Citation: | Fan Qingkai,Li Jianghai. Study on the influence of bathymetry on hydrothermal convection under mid-ocean ridges: Based on the spatial variation of overlying pressure of seawater[J]. Haiyang Xuebao,2020, 42(9):61–68 doi: 10.3969/j.issn.0253-4193.2020.09.007 |
[1] |
Stein C A, Stein S. Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B2): 3081−3095. doi: 10.1029/93JB02222
|
[2] |
Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean[J]. Annual Review of Earth and Planetary Sciences, 1996, 24(1): 191−224. doi: 10.1146/annurev.earth.24.1.191
|
[3] |
Morgan J P, Chen Y J. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6283−6297. doi: 10.1029/92JB02650
|
[4] |
Lowell R P, Germanovich L N. Hydrothermal processes at mid-ocean ridges: results from scale analysis and single-pass models[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington, DC: American Geophysical Union, 2004, 148: 219−244.
|
[5] |
Lowell R P, Gosnell S, Yang Y. Numerical simulations of single-pass hydrothermal convection at mid-ocean ridges: effects of the extrusive layer and temperature-dependent permeability[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10): Q10011.
|
[6] |
Lowell R P, Farough A, Hoover J, et al. Characteristics of magma-driven hydrothermal systems at oceanic spreading centers[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(6): 1756−1770. doi: 10.1002/ggge.20109
|
[7] |
Coumou D, Driesner T, Geiger S, et al. The dynamics of mid-ocean ridge hydrothermal systems: splitting plumes and fluctuating vent temperatures[J]. Earth and Planetary Science Letters, 2006, 245(1/2): 218−231.
|
[8] |
Coumou D, Driesner T, Heinrich C A. The structure and dynamics of mid-ocean ridge hydrothermal systems[J]. Science, 2008, 321(5897): 1825−1828. doi: 10.1126/science.1159582
|
[9] |
Driesner T. The interplay of permeability and fluid properties as a first order control of heat transport, venting temperatures and venting salinities at mid-ocean ridge hydrothermal systems[J]. Geofluids, 2010, 10(1/2): 132−141.
|
[10] |
German C R, Baker E T, Mevel C, et al. Hydrothermal activity along the southwest Indian Ridge[J]. Nature, 1998, 395(6701): 490−493. doi: 10.1038/26730
|
[11] |
Lowell R P. Topographically driven subcritical hydrothermal convection in the oceanic crust[J]. Earth and Planetary Science Letters, 1980, 49(1): 21−28. doi: 10.1016/0012-821X(80)90145-4
|
[12] |
Wang H Q, Hsieh Y P, Harwell M A, et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007, 201(3/4): 429−439.
|
[13] |
Bani-Hassan N, Iyer K, Rüpke L H, et al. Controls of bathymetric relief on hydrothermal fluid flow at mid-ocean ridges[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(5): Q05002.
|
[14] |
Toomey D R, Purdy G M, Solomon S C, et al. The three-dimensional seismic velocity structure of the East Pacific Rise near latitude 9°30′ N[J]. Nature, 1990, 347(6294): 639−645. doi: 10.1038/347639a0
|
[15] |
Haymon R M, Fornari D J, Edwards M H, et al. Hydrothermal vent distribution along the East Pacific Rise crest (9°09′–54′ N) and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges[J]. Earth and Planetary Science Letters, 1991, 104(2/4): 513−534.
|
[16] |
Langmuir C, Humphris S, Fornari D, et al. Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 69−91.
|
[17] |
Singh S C, Crawford W C, Carton H, et al. Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field[J]. Nature, 2006, 442(7106): 1029−1032. doi: 10.1038/nature05105
|
[18] |
Tolstoy M, Waldhauser F, Bohnenstiehl D R, et al. Seismic identification of along-axis hydrothermal flow on the East Pacific Rise[J]. Nature, 2008, 451(7175): 181−184. doi: 10.1038/nature06424
|
[19] |
Crone T J, Wilcock W S D. Modeling the effects of tidal loading on mid-ocean ridge hydrothermal systems[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7): Q07001.
|
[20] |
Beaulieu S E, Baker E T, German C R, et al. An authoritative global database for active submarine hydrothermal vent fields[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(11): 4892−4905. doi: 10.1002/2013GC004998
|
[21] |
Ryan W B F, Carbotte S M, Coplan J O, et al. Global multi-resolution topography synthesis[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(3): Q03014.
|
[22] |
Olive J A, Crone T J. Smoke without fire: how long can thermal cracking sustain hydrothermal circulation in the absence of magmatic heat?[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(6): 4561−4581. doi: 10.1029/2017JB014900
|
[23] |
Turcotte D L, Schubert G. Geodynamics: Application of Continuum Physics to Geological Problems[M]. New York: John Wiley & Sons, 1982: 22−45.
|
[24] |
Pitzer K S, Peiper J C, Busey R H. Thermodynamic properties of aqueous sodium chloride solutions[J]. Journal of Physical and Chemical Reference Data, 1984, 13(1): 1−102. doi: 10.1063/1.555709
|
[25] |
Anderko A, Pitzer K S. Equation-of-state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K[J]. Geochimica et Cosmochimica Acta, 1993, 57(8): 1657−1680. doi: 10.1016/0016-7037(93)90105-6
|
[26] |
Holzbecher E O. Modeling Density-Driven Flow in Porous Media: Principles, Numerics, Software (Vol. 1)[M]. Berlin Heidelberg: Springer, 1998: 213−220.
|
[27] |
Fontaine F J, Wilcock W S D. Two-dimensional numerical models of open-top hydrothermal convection at high Rayleigh and Nusselt numbers: implications for mid-ocean ridge hydrothermal circulation[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(7): Q07010.
|
[28] |
Fisher A T. Permeability within basaltic oceanic crust[J]. Reviews of Geophysics, 1998, 36(2): 143−182. doi: 10.1029/97RG02916
|
[29] |
Fisher A T. Rates of flow and patterns of fluid circulation[M]//Davis E E, Elderfield H. Hydrogeology of the Oceanic Lithosphere. Cambridge: Cambridge University Press, 2004: 339−377.
|
[30] |
Fontaine F J, Olive J A, Cannat M, et al. Hydrothermally-induced melt lens cooling and segmentation along the axis of fast-and intermediate-spreading centers[J]. Geophysical Research Letters, 2011, 38(14): L14307.
|
[31] |
Kent G M, Harding A J, Orcutt J A. Distribution of magma beneath the East Pacific Rise between the Clipperton transform and the 9°17′N Deval from forward modeling of common depth point data[J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B8): 13945−13969. doi: 10.1029/93JB00705
|
[32] |
Van Ark E M, Detrick R S, Canales J P, et al. Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: correlations with seismicity and hydrothermal activity[J]. Journal of Geophysical Research, 2007, 112(B2): B02401.
|
[33] |
Rea D K, Scheidegger K F. Eastern Pacific spreading rate fluctuation and its relation to Pacific area volcanic episodes[J]. Journal of volcanology and Geothermal Research, 1979, 5(1/2): 135−148.
|
[34] |
Toomey D R, Solomon S C, Purdy G M. Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9° 30′ N[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B12): 24135−24157. doi: 10.1029/94JB01942
|
[35] |
Shank T M, Fornari D J, Von Damm K L, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50′ N, East Pacific Rise)[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45(1/3): 465−515.
|
[36] |
Baker E T, Chen Y J, Morgan J P. The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges[J]. Earth and Planetary Science Letters, 1996, 142(1/2): 137−145.
|
[37] |
Cannat M, Briais A, Deplus C, et al. Mid-Atlantic Ridge–Azores hotspot interactions: along-axis migration of a hotspot-derived event of enhanced magmatism 10 to 4 Ma ago[J]. Earth and Planetary Science Letters, 1999, 173(3): 257−269. doi: 10.1016/S0012-821X(99)00234-4
|
[38] |
Fouquet Y, Ondréas H, Charlou J L, et al. Atlantic lava lakes and hot vents[J]. Nature, 1995, 377(6546): 201. doi: 10.1038/377201a0
|
[39] |
Barreyre T, Olive J A, Crone T J, et al. Depth-dependent permeability and heat output at basalt-hosted hydrothermal systems across mid-ocean ridge spreading rates[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(4): 1259−1281. doi: 10.1002/2017GC007152
|