Citation: | Miao Qi,Xu Fumin,Yu Maoling. Comparison of wave simulation results of different ice dissipation source terms in WAVEWATCH Ⅲ[J]. Haiyang Xuebao,2020, 42(9):22–29 doi: 10.3969/j.issn.0253-4193.2020.09.003 |
[1] |
Kwok R, Untersteiner N. The thinning of Arctic sea ice[J]. Physics Today, 2011, 64(4): 36−41. doi: 10.1063/1.3580491
|
[2] |
柯长青, 彭海涛, 孙波, 等. 2002年−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044
Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044
|
[3] |
刘玥, 庞小平, 赵羲, 等. 基于海冰密集度遥感数据的波弗特海海冰时空变化研究[J]. 极地研究, 2018, 30(2): 161−172.
Liu Yue, Pang Xiaoping, Zhao Xi, et al. Analysis of spatiotemporal variability of sea ice in the Beaufort Sea using passive microwave remote sensing data[J]. Chinese Journal of Polar Research, 2018, 30(2): 161−172.
|
[4] |
Swail V R, Cardone V J, Callahan B, et al. The MSC Beaufort wind and wave reanalysis[C]//Proceedings of the Tenth International Workshop on Wave Hindcasting and Forecasting. North Shore, Oahu, Hawaii, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology, 2007: E1.
|
[5] |
Lintern D G, Macdonald R W, Solomon S M, et al. Beaufort Sea storm and resuspension modeling[J]. Journal of Marine Systems, 2013, 127: 14−25. doi: 10.1016/j.jmarsys.2011.11.015
|
[6] |
Xu Fumin, Perrie W, Solomon S. Shallow water dissipation processes for wind waves off the Mackenzie Delta[J]. Atmosphere-Ocean, 2013, 51(3): 296−308. doi: 10.1080/07055900.2013.794123
|
[7] |
Hoque M A, Perrie W, Solomon S M. Evaluation of two spectral wave models for wave hindcasting in the Mackenzie Delta[J]. Applied Ocean Research, 2017, 62: 169−180. doi: 10.1016/j.apor.2016.11.009
|
[8] |
郑崇伟, 周林, 宋帅, 等. 1307号台风“苏力”台风浪数值模拟[J]. 厦门大学学报: 自然科学版, 2014, 53(2): 257−262.
Zheng Chongwei, Zhou Lin, Song Shuai, et al. Simulation of the wave field caused by 1307 typhoon "Soulik"[J]. Journal of Xiamen University: Natural Science, 2014, 53(2): 257−262.
|
[9] |
Huchet M, Leckler F, Filipot J F, et al. On the high resolution coastal applications with WAVEWATCH Ⅲ[C]//14th International Workshop on Wave Hindcasting and Forecasting, and 5th Coastal Hazard Symposium. Key West, Florida, USA: Environment Canada, U.S. Army Engineer, Research and Development Center's Coastal and Hydraulics Laboratory, WMO/IOC Joint Technical Commission for Oceanography and Marine Meteorology , 2015: W2.
|
[10] |
Seemanth M, Bhowmick S A, Kumar R, et al. Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH Ⅲ for Indian Ocean[J]. Ocean Engineering, 2016, 124: 252−273. doi: 10.1016/j.oceaneng.2016.07.023
|
[11] |
沈旭伟, 范力阳, 陈国平, 等. 台风“鲇鱼”作用下南海波浪场的数值模拟研究[J]. 水道港口, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012
Shen Xuwei, Fan Liyang, Chen Guoping, et al. Numerical simulation studies of influence on wave field in the South China Sea caused by typhoon Megi[J]. Journal of Waterway and Harbor, 2016, 37(4): 369−374. doi: 10.3969/j.issn.1005-8443.2016.04.012
|
[12] |
Erick W E, Thomson J, Shen H H, et al. Dissipation of wind waves by pancake and frazil ice in the autumn Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2016, 121(11): 7991−8007. doi: 10.1002/2016JC012251
|
[13] |
Cheng Sukun, Rogers W E, Thomson J, et al. Calibrating a viscoelastic sea ice model for wave propagation in the Arctic fall marginal ice zone[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8770−8793. doi: 10.1002/2017JC013275
|
[14] |
Komen G J, Cavaleri L, Donelan M, et al. Dynamics and Modelling of Ocean Waves[M]. Cambridge: Cambridge University Press, 1994: 554.
|
[15] |
Liu A K, Mollo-Christensen E. Wave propagation in a solid ice pack[J]. Journal of Physical Oceanography, 1988, 18(11): 1702−1712. doi: 10.1175/1520-0485(1988)018<1702:WPIASI>2.0.CO;2
|
[16] |
Liu A K, Holt B, Vachon P W. Wave propagation in the marginal ice zone: Model predictions and comparisons with buoy and synthetic aperture radar data[J]. Journal of Geophysical Research: Oceans, 1991, 96(C3): 4605−4621. doi: 10.1029/90JC02267
|
[17] |
Ardhuin F, Collard F, Chapron B, et al. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A[J]. Geophysical Research Letters, 2015, 42(7): 2317−2325. doi: 10.1002/2014GL062940
|
[18] |
Wang Ruixue, Shen H H. Gravity waves propagating into an ice-covered ocean: A viscoelastic model[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): 24−36.
|
[19] |
Wadhams P, Squire V A, Goodman D J, et al. The attenuation rates of ocean waves in the marginal ice zone[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6799−6818. doi: 10.1029/JC093iC06p06799
|
[20] |
Meylan M H, Bennetts L G, Kohout A L. In situ measurements and analysis of ocean waves in the Antarctic marginal ice zone[J]. Geophysical Research Letters, 2014, 41(14): 5046−5051. doi: 10.1002/2014GL060809
|
[21] |
Kohout A L, Meylan M H. An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone[J]. Journal of Geophysical Research Oceans, 2008, 113(C9): C09016.
|
[22] |
Ardhuin F, Boutin G, Stopa J, et al. Wave attenuation through an Arctic Marginal Ice Zone on 12 October 2015: 2: numerical modeling of waves and associated ice breakup[J]. Journal of Geophysical Research: Oceans, 2018, 123(8): 5652−5668. doi: 10.1002/2018JC013784
|
[23] |
Horvat C, Tziperman E. A prognostic model of the sea-ice floe size and thickness distribution[J]. The Cryosphere, 2015, 9(6): 2119−2134. doi: 10.5194/tc-9-2119-2015
|
[24] |
Kohout A L, Williams M J M, Dean S M, et al. Storm-induced sea-ice breakup and the implications for ice extent[J]. Nature, 2014, 509(7502): 604−607. doi: 10.1038/nature13262
|
[25] |
Li Jingkai, Kohout A L, Shen H H. Comparison of wave propagation through ice covers in calm and storm conditions[J]. Geophysical Research Letters, 2015, 42(14): 5935−5941. doi: 10.1002/2015GL064715
|
[26] |
Janssen P A E M. Quasi-linear theory of wind-wave generation applied to wave forecasting[J]. Journal of Physical Oceanography, 1991, 21(11): 1631−1642. doi: 10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
|
[27] |
Ardhuin F, Chapron B, Collard F. Observation of swell dissipation across oceans[J]. Geophysical Research Letters, 2009, 36(6): L06607.
|
[28] |
Hasselmann S, Hasselmann K, Allender J H, et al. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part Ⅱ: Parameterizations of the nonlinear energy transfer for application in wave models[J]. Journal of Physical Oceanography, 1985, 15(11): 1378−1391. doi: 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
|
[29] |
Madsen P A, Sørensen O R. Bound waves and triad interactions in shallow water[J]. Ocean Engineering, 1993, 20(4): 359−388. doi: 10.1016/0029-8018(93)90002-Y
|
[30] |
Tolman H L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents[J]. Journal of Physical Oceanography, 1991, 21(6): 782−797. doi: 10.1175/1520-0485(1991)021<0782:ATGMFW>2.0.CO;2
|
[31] |
Battjes J A, Janssen H. Energy loss and set-up due to breaking of random waves[J]. Coastal Engineering Proceedings, 1978, 1(6): 32.
|