Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 7
Nov.  2020
Turn off MathJax
Article Contents
Liu Yupeng,Tang Danling,Liang Wenzhao. Chlorophyll a concentration response to the typhoon “wind pump” and the Kuroshio in the northeastern South China Sea[J]. Haiyang Xuebao,2020, 42(7):16–31 doi: 10.3969/j.issn.0253-4193.2020.07.002
Citation: Liu Yupeng,Tang Danling,Liang Wenzhao. Chlorophyll a concentration response to the typhoon “wind pump” and the Kuroshio in the northeastern South China Sea[J]. Haiyang Xuebao,2020, 42(7):16–31 doi: 10.3969/j.issn.0253-4193.2020.07.002

Chlorophyll a concentration response to the typhoon “wind pump” and the Kuroshio in the northeastern South China Sea

doi: 10.3969/j.issn.0253-4193.2020.07.002
  • Received Date: 2019-05-21
  • Rev Recd Date: 2019-09-27
  • Available Online: 2020-11-18
  • Publish Date: 2020-07-25
  • The northeastern South China Sea is oligotrophic. In summer, the northeastern South China Sea is low in phytoplankton chlorophyll a (Chl a) concentration, and the typhoon “wind pump” induced upper ocean turbulence can transport nutrients upwards, and therefore increase the Chl a concentration in the surface and subsurface layers. Previous studies have generally focused on the effects of tropical cyclonic wind stress and ocean mesoscale eddies on the Chl a concentration in the upper ocean. This study investigates the possible effect of the Kuroshio to the Chl a concentration in the euphotic layer after typhoon using CTD data, in situ Chl a concentration, Argo profiles and remote sensing data. The results show that the Typhoon Linfa in 2015 caused a looping path of the Kuroshio intrusion into the South China Sea (Area A) through the northwestern Luzon Strait, which weakened the pre-existing cyclonic eddy after the typhoon. This typhoon “wind pump” enhanced Kuroshio inhibited the uplift of nutrients to the surface layer (0−40 m) through the typhoon Ekman Pumping, and accumulated the nutrient in the subsurface layer (60−90 m), thereby inhibiting the increase of surface Chl a concentration but promoting the growth of subsurface Chl a concentration. The increase of Chl a concentration over the western Luzon in the South China Sea (Area B) was not only the vertical redistribution of the phytoplankton, but especially the growth of the phytoplankton. The typhoon-induced looping path of Kuroshio over the northwestern Luzon promoted the formation of the cyclonic eddy over the western Luzon. This continuously enhancing cyclonic eddy provided sufficient nutrients for the significant increase of the chlorophyll in the surface layer (0−40 m).
  • loading
  • [1]
    Falkowski P G. The role of phytoplankton photosynthesis in global biogeochemical cycles[J]. Photosynthesis Research, 1994, 39(3): 235−258. doi: 10.1007/BF00014586
    [2]
    Zhao Hui, Shao Jinchao, Han Guoqi, et al. Influence of typhoon matsa on phytoplankton chlorophyll-a off East China[J]. PLoS One, 2015, 10(9): e0137863. doi: 10.1371/journal.pone.0137863
    [3]
    Ning X, Chai F, Xue H, et al. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea[J]. Journal of Geophysical Research, 2004, 109(C10): C10005. doi: 10.1029/2004JC002365
    [4]
    张亚锋, 王旭涛, 殷克东. 南海台风引发藻华的生物机制[J]. 生态学报, 2018, 38(16): 5667−5678.

    Zhang Yafeng, Wang Xutao, Yin Kedong. Biological mechanisms of typhoon-induced blooms in the South China Sea[J]. Acta Ecologica Sinica, 2018, 38(16): 5667−5678.
    [5]
    Tang Danling, Kawamura H, Van Dien T, et al. Offshore phytoplankton biomass increase and its oceanographic causes in the South China Sea[J]. Marine Ecology Progress Series, 2004, 268: 31−41. doi: 10.3354/meps268031
    [6]
    Peñaflor E L, Villanoy C L, Liu C T, et al. Detection of monsoonal phytoplankton blooms in Luzon Strait with MODIS data[J]. Remote Sensing of Environment, 2007, 109(4): 443−450. doi: 10.1016/j.rse.2007.01.019
    [7]
    刘子琳, 陈忠元, 周蓓锋, 等. 黑潮源区及其邻近海域叶绿素a浓度的季节分布[J]. 海洋湖沼通报, 2006(1): 58−63. doi: 10.3969/j.issn.1003-6482.2006.01.008

    Liu Zilin, Chen Zhongyuan, Zhou Beifeng, et al. The seasonal distribution of the standing stock of phytoplankton in the source area of the Kuroshio and adjacent areas[J]. Transactions of Oceanology and Limnology, 2006(1): 58−63. doi: 10.3969/j.issn.1003-6482.2006.01.008
    [8]
    Chen Gengxin, Hu Po, Chu Xiaoqing. Intrusion of the Kuroshio into the South China Sea, in September 2008[J]. Journal of Oceanography, 2011, 67(4): 439−448. doi: 10.1007/s10872-011-0047-y
    [9]
    耿伍, 何伟宏, 邹晓理, 等. 理想台风驱动的涡旋对吕宋海峡黑潮影响的数值研究[J]. 热带海洋学报, 2013, 32(2): 66−73. doi: 10.3969/j.issn.1009-5470.2013.02.007

    Geng Wu, He Weihong, Zou Xiaoli, et al. A numerical study of effects due to mesoscale eddy induced by an idealized typhoon and the Kuroshio in the Luzon Strait[J]. Journal of Tropical Oceanography, 2013, 32(2): 66−73. doi: 10.3969/j.issn.1009-5470.2013.02.007
    [10]
    Lin I, Liu W T, Wu C C, et al. New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters, 2003, 30(13): 1718.
    [11]
    林静柔, 唐丹玲, 娄全胜. 超级台风“南玛都”对南海北部叶绿素a、温盐及溶解氧的影响[J]. 生态科学, 2015, 34(4): 9−14.

    Lin Jingrou, Tang Danling, Lou Quansheng. The impact of Super Typhoon Nanmadol on the chlorophyll a, temperature, salinity and dissolved oxygen in the northern South China Sea[J]. Ecological Science, 2015, 34(4): 9−14.
    [12]
    赵辉, 张书文, 侯一筠, 等. 热带风暴“天鹰”对南海西部浮游植物叶绿素浓度的影响[J]. 热带海洋学报, 2013, 32(5): 99−106. doi: 10.3969/j.issn.1009-5470.2013.05.014

    Zhao Hui, Zhang Shuwen, Hou Yijun, et al. Influence of Tropical Storm Washi on phytoplankton chlorophyll-a in the western South China Sea[J]. Journal of Tropical Oceanography, 2013, 32(5): 99−106. doi: 10.3969/j.issn.1009-5470.2013.05.014
    [13]
    Ye Haijun, Morozov E, Tang Danling, et al. Variation of pCO2 concentrations induced by tropical cyclones “Wind-Pump” in the middle-latitude surface oceans: a comparative study[J]. PLoS One, 2020, 15(3): e0226189. doi: 10.1371/journal.pone.0226189
    [14]
    Gong G C, Shiah F K, Liu K K, et al. Effect of the Kuroshio intrusion on the chlorophyll distribution in the southern East China Sea during spring 1993[J]. Continental Shelf Research, 1997, 17(1): 79−94. doi: 10.1016/0278-4343(96)00022-2
    [15]
    Guo Lin, Xiu Peng, Chai Fei, et al. Enhanced chlorophyll concentrations induced by Kuroshio intrusion fronts in the northern South China Sea[J]. Geophysical Research Letters, 2017, 44(22): 11565−11572. doi: 10.1002/2017GL075336
    [16]
    Xu Huabing, Tang Danling, Sheng Jinyu, et al. Study of dissolved oxygen responses to tropical cyclones in the Bay of Bengal based on Argo and satellite observations[J]. Science of The Total Environment, 2018, 659: 912-922.
    [17]
    Sun Qingyang, Tang Danling, Legendre L, et al. Enhanced sea-air CO2 exchange influenced by a tropical depression in the South China Sea[J]. Journal of Geophysical Research, 2014, 119(10): 6792−6804.
    [18]
    宋勇军, 唐丹玲. 南海东北部混合层深度对热带气旋海鸥和凤凰的响应[J]. 热带海洋学报, 2017, 36(1): 15−24.

    Song Yongjun, Tang Danling. Mixed layer depth responses to tropical cyclones Kalmaegi and Fung-Wong in the northeastern South China Sea[J]. Journal of Tropical Oceanography, 2017, 36(1): 15−24.
    [19]
    唐世林, 陈楚群, 詹海刚, 等. 南海真光层深度的遥感反演[J]. 热带海洋学报, 2007, 26(1): 9−15. doi: 10.3969/j.issn.1009-5470.2007.01.002

    Tang Shilin, Chen Chuqun, Zhan Haigang, et al. Retrieval of euphotic layer depth of South China Sea by remote sensing[J]. Journal of Tropical Oceanography, 2007, 26(1): 9−15. doi: 10.3969/j.issn.1009-5470.2007.01.002
    [20]
    Ye H J, Sui Y, Tang D L, et al. A subsurface chlorophyll a bloom induced by typhoon in the South China Sea[J]. Journal of Marine Systems, 2013, 128: 138−145. doi: 10.1016/j.jmarsys.2013.04.010
    [21]
    Zhao Hui, Han Guoqi, Zhang Shuwen, et al. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma[J]. Journal of Geophysical Research, 2013, 118(2): 412−421.
    [22]
    Price J F. Upper ocean response to a hurricane[J]. Journal of Physical Oceanography, 1981, 11(2): 153−175. doi: 10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
    [23]
    Fu Dongyang, Pan Delu, Mao Zhihua, et al. The effects of chlorophyll-a and SST in the South China Sea area by typhoon near last decade[C]//Proceedings of Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX. Berlin, Germany: SPIE, 2009: 74782E.
    [24]
    Talley L D, Pickard G L, Emery W J, et al. Mass, salt, and heat budgets and wind forcing[M]//Talley L D, Pickard G L, Emery W J, et al. Descriptive Physical Oceanography. 6th ed. Oxford: Academic Press, 2011: 111−145.
    [25]
    He Qingyou, Zhan Haigang, Cai Shuqun, et al. Eddy effects on surface chlorophyll in the northern South China Sea: mechanism investigation and temporal variability analysis[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 112: 25−36. doi: 10.1016/j.dsr.2016.03.004
    [26]
    刘赛赛, 张立凤, 张晓慧. 台风“彩虹”(1522)近海急剧加强的特征分析[J]. 气象科学, 2017, 37(4): 487−496.

    Liu Saisai, Zhang Lifeng, Zhang Xiaohui. Characteristics analysis on rapid intensification of typhoon Mujigae (1522) over the offshore area of China[J]. Journal of the Meteorological Sciences, 2017, 37(4): 487−496.
    [27]
    Chen Yongqiang, Tang Danling. Eddy-feature phytoplankton bloom induced by a tropical cyclone in the South China Sea[J]. International Journal of Remote Sensing, 2012, 33(23): 7444−7457. doi: 10.1080/01431161.2012.685976
    [28]
    Pan Gang, Chai Fei, Tang Danling, et al. Marine phytoplankton biomass responses to typhoon events in the South China Sea based on physical-biogeochemical model[J]. Ecological Modelling, 2017, 356: 38−47. doi: 10.1016/j.ecolmodel.2017.04.013
    [29]
    Liu Yupeng, Tang Danling, Evgeny M. Chlorophyll concentration response to the typhoon Wind-Pump induced upper ocean processes considering air–sea heat exchange[J]. Remote Sensing, 2019, 11(15): 1825. doi: 10.3390/rs11151825
    [30]
    刘广平, 胡建宇. 热带气旋过境期间黑潮流轴变化的初步分析[J]. 热带海洋学报, 2012, 31(1): 35−41.

    Liu Guangping, Hu Jianyu. A preliminary analysis of variation of the Kuroshio axis during tropical cyclone[J]. Journal of Tropical Oceanography, 2012, 31(1): 35−41.
    [31]
    Kuo Yichun, Zheng Zhewen, Zheng Quanan, et al. Typhoon–Kuroshio interaction in an air–sea coupled system: case study of typhoon nanmadol (2011)[J]. Ocean Modelling, 2018, 132: 130−138. doi: 10.1016/j.ocemod.2018.10.007
    [32]
    Nan Feng, Xue Huijie, Chai Fei, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1291−1304. doi: 10.1007/s10236-011-0426-3
    [33]
    Huang Zhida, Liu Hailong, Lin Pengfei, et al. Influence of island chains on the Kuroshio intrusion in the Luzon Strait[J]. Advances in Atmospheric Sciences, 2017, 34(3): 397−410. doi: 10.1007/s00376-016-6159-y
    [34]
    Zheng Guangming, Tang Danling. Offshore and nearshore chlorophyll increases induced by typhoon and typhoon rain[J]. Marine Ecology Progress Series, 2007, 333: 61−74. doi: 10.3354/meps333061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article views (335) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return