Citation: | Wang Yuan,Li Huaiming,Dong Chuanwan, et al. Petrological characteristics of altered rocks and apparent hydrothermal fluid circulation at Longqi hydrothermal fields along the Southwest Indian Ridge[J]. Haiyang Xuebao,2020, 42(5):77–94,doi:10.3969/j.issn.0253−4193. 2020.05.008 |
[1] |
Beaulieu S E, Baker E T, German C R. Where are the undiscovered hydrothermal vents on oceanic spreading ridges?[J]. Deep-Sea Research Part Ⅱ: Topical Studies in Oceanography, 2015, 121: 202−212. doi: 10.1016/j.dsr2.2015.05.001
|
[2] |
Baker E T, Resing J A, Haymon R M, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations[J]. Earth and Planetary Science Letters, 2016, 449: 186−196. doi: 10.1016/j.jpgl.2016.05.031
|
[3] |
German C R, Petersen S, Hannington M D. Hydrothermal exploration of mid-ocean ridges: Where might the largest sulfide deposits be forming?[J]. Chemical Geology, 2016, 420: 114−126. doi: 10.1016/j.chemgeo.2015.11.006
|
[4] |
Blackman D K, Canales J P, Harding A. Geophysical signatures of oceanic core complexes[J]. Geophysical Journal International, 2009, 178(2): 593−613. doi: 10.1111/j.1365-246X.2009.04184.x
|
[5] |
McCaig A M, Cliff R A, Escartin J, et al. Oceanic detachment faults focus very large volumes of black smoker fluids[J]. Geology, 2007, 35(10): 935−938. doi: 10.1130/G23657A.1
|
[6] |
Saccocia P J, Gillis K M. Hydrothermal upflow zones in the oceanic crust[J]. Earth and Planetary Science Letters, 1995, 136(1/2): 1−16.
|
[7] |
Mccaig A M, Delacour A, Fallick A E, et al. Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic[M]//Rona A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington DC: Geophysical Monograph Series, 2010: 207−239.
|
[8] |
Escartín J, Mével C, Macleod C J, et al. Constraints on deformation conditions and the origin of oceanic detachments: The Mid-Atlantic Ridge core complex at 15°45'N[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(8): 1067.
|
[9] |
Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(9): Q09F26.
|
[10] |
Boschi C, Früh-Green G L, Delacour A, et al. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N)[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1): Q01004.
|
[11] |
Escartín J, Smith D K, Cann J, et al. Central role of detachment faults in accretion of slow-spreading oceanic lithosphere[J]. Nature, 2008, 455(7214): 790−794. doi: 10.1038/nature07333
|
[12] |
Bach W, Früh-Green G L. Alteration of the oceanic lithosphere and implications for seafloor processes[J]. Elements, 2010, 6(3): 173−178. doi: 10.2113/gselements.6.3.173
|
[13] |
Miranda E A, John B E. Strain localization along the Atlantis Bank oceanic detachment fault system, Southwest Indian Ridge[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(4): Q04002.
|
[14] |
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.
Zeng Zhigang. Hydrothermal Geology[M]. Beijing: Science Press, 2011.
|
[15] |
Augustin N, Paulick H, Lackschewitz K S, et al. Alteration at the ultramafic-hosted Logatchev hydrothermal field: Constraints from trace element and Sr-O isotope data[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(3): Q0AE07.
|
[16] |
Augustin N, Lackschewitz K S, Kuhn T, et al. Mineralogical and chemical mass changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N)[J]. Marine Geology, 2008, 256(1/4): 18−29.
|
[17] |
Tao Chunhui, Lin Jian, Guo Shiqin, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge[J]. Geology, 2012, 40(1): 47−50. doi: 10.1130/G32389.1
|
[18] |
Zhao Minghui, Qiu Xuelin, Li Jiabiao, et al. Three-dimensional seismic structure of the Dragon Flag oceanic core complex at the ultraslow spreading Southwest Indian Ridge (49°39'E)[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(10): 4544−4563. doi: 10.1002/ggge.20264
|
[19] |
Canales J P, Sohn R A, DeMartin B J. Crustal structure of the Trans-Atlantic Geotraverse (TAG) segment (Mid-Atlantic Ridge, 26°10'N): Implications for the nature of hydrothermal circulation and detachment faulting at slow spreading ridges[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(8): Q08004.
|
[20] |
Li Jiabiao, Jian Hanchao, Chen Yongshun, et al. Seismic observation of an extremely magmatic accretion at the ultraslow spreading Southwest Indian Ridge[J]. Geophysical Research Letters, 2015, 42(8): 2656−2663. doi: 10.1002/2014GL062521
|
[21] |
Horner-Johnson B C, Gordon R G, Cowles S M, et al. The angular velocity of Nubia relative to Somalia and the location of the Nubia-Somalia-Antarctica triple junction[J]. Geophysical Journal International, 2005, 162(1): 221−238. doi: 10.1111/j.1365-246X.2005.02608.x
|
[22] |
Yang A Y, Zhao Taiping, Zhou Meifu, et al. Isotopically enriched N-MORB: a new geochemical signature of off-axis plume-ridge interaction-A case study at 50°28'E, Southwest Indian Ridge[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 191−213. doi: 10.1002/2016JB013284
|
[23] |
Sauter D, Cannat M, Meyzen C, et al. Propagation of a melting anomaly along the ultraslow Southwest Indian Ridge between 46°E and 52°20'E: interaction with the Crozet hotspot?[J]. Geophysical Journal International, 2009, 179(2): 687−699. doi: 10.1111/j.1365-246X.2009.04308.x
|
[24] |
Tao Chunhui, Li Huaiming, Jin Xiaobing, et al. Seafloor hydrothermal activity and polymetallic sulfide exploration on the Southwest Indian Ridge[J]. Chinese Science Bulletin, 2014, 59(19): 2266−2276. doi: 10.1007/s11434-014-0182-0
|
[25] |
Zhang Tao, Lin Jian, Gao Jinyao. Magmatism and tectonic processes in Area A hydrothermal vent on the Southwest Indian Ridge[J]. Science China: Earth Sciences, 2013, 56(12): 2186−2197. doi: 10.1007/s11430-013-4630-5
|
[26] |
柳云龙. 西南印度洋洋中脊龙旂热液区地震活动及其构造特征研究[D]. 长春: 吉林大学, 2018.
Liu Yunlong. Seismic activities and tectonic characteristics of Longqi hydrothermal field at Southwest Indian Ridge[D]. Changchun: Jilin University, 2018.
|
[27] |
Cathelineau M, Nieva D. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system[J]. Contributions to Mineralogy and Petrology, 1985, 91(3): 235−244. doi: 10.1007/BF00413350
|
[28] |
Xie Xiaogang, Byerly G R, Ferrell R E Jr. Ⅱb trioctahedral chlorite from the Barberton greenstone belt: crystal structure and rock composition constraints with implications to geothermometry[J]. Contributions to Mineralogy and Petrology, 1997, 126(3): 275−291. doi: 10.1007/s004100050250
|
[29] |
Cathelineau M. Cation site occupancy in chlorites and illites as a function of temperature[J]. Clay Minerals, 1988, 23(4): 471−485. doi: 10.1180/claymin.1988.023.4.13
|
[30] |
Battaglia S. Applying X-ray geothermometer diffraction to a chlorite[J]. Clays and Clay Minerals, 1999, 47(1): 54−63. doi: 10.1346/CCMN.1999.0470106
|
[31] |
Foster M D. Interpretation of the composition and a classification of the chlorites[J]. U.S. Geological Survey Professional Paper, 1962: 414.
|
[32] |
Jowett E C. Fitting iron and magnesium into the hydrothermal chlorite geothermometer[C]//Paper Presented at the GAC/MAC/SEG Joint Annual Meeting. Toronto, Canada, 1991.
|
[33] |
Alt J C, Honnorez J, Laverne C, et al. Hydrothermal Alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B10): 10309−10335. doi: 10.1029/JB091iB10p10309
|
[34] |
Humphris S E, Alt J C, Teagle D A H, et al. Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound[J]. Proceedings of the Ocean Drilling Program: Scientific Results, 1998, 158: 255−276.
|
[35] |
Inoue A. Formation of clay minerals in hydrothermal environments[M]//Velde B. Origin and Mineralogy of Clays. Berlin, Heidelberg: Springer, 1995: 268-329.
|
[36] |
Lowell R P. Hydrothermal circulation at slow spreading ridges: Analysis of heat sources and heat transfer processes[M]//Rona P A, Devey C W, Dyment J, et al. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington DC: Geophysical Monograph Series, 2013.
|
[37] |
Dick H J B, Lin Jian, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426(6965): 405−412. doi: 10.1038/nature02128
|
[38] |
Zhou Huaiyang, Dick H J. Thin crust as evidence for depleted mantle supporting the Marion Rise[J]. Nature, 2013, 494(7436): 195−200. doi: 10.1038/nature11842
|
[39] |
Baker E T, German C R. On the global distribution of hydrothermal vent fields[M]//German C R, Lin J, Parson L M. Mid-Ocean Ridges: Hydrothermal Interactions between the Lithosphere and Oceans. Washington DC: American Geophysical Union, 2004, 148: 245−266.
|
[40] |
German C R, Klinkhammer G P, Rudnicki M D. The rainbow hydrothermal plume, 36°15'N, MAR[J]. Geophysical Research Letters, 1997, 23(21): 2979−2982.
|