Citation: | Tian Fenglin,Ren Yidan,He Qiu, et al. Extracting and analyzing current transport structures in the Kuroshio area based on Lagrangian coherent structures[J]. Haiyang Xuebao,2020, 42(5):12–21,doi:10.3969/j.issn.0253−4193.2020.05.002 |
[1] |
张灿影, 冯志纲, 张晓琨, 等. 黑潮研究进展分析[J]. 世界科技研究与发展, 2017, 39(3): 239−249.
Zhang Canying, Feng Zhigang, Zhang Xiaokun, et al. Analysis on research progress of Kuroshio[J]. World Sci-Tech R&D, 2017, 39(3): 239−249.
|
[2] |
Qiu Bo. The Kuroshio extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction[J]. Journal of Oceanography, 2002, 58(1): 57−75. doi: 10.1023/A:1015824717293
|
[3] |
Jayne S R, Hogg N G, Waterman S N, et al. The Kuroshio extension and its recirculation gyres[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(12): 2088−2099. doi: 10.1016/j.dsr.2009.08.006
|
[4] |
Qiu Bo, Chen Shuiming. Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales[J]. Journal of Physical Oceanography, 2005, 35(11): 2090−2103. doi: 10.1175/JPO2807.1
|
[5] |
刘晓辉, 陈大可, 董昌明, 等. 利用拉格朗日方法研究台湾东北黑潮路径变化[J]. 中国科学: 地球科学, 2016, 59(2): 268−280. doi: 10.1007/s11430-015-5176-5
Liu Xiaohui, Chen Dake, Dong Changming, et al. Variation of the Kuroshio intrusion pathways northeast of Taiwan using the Lagrangian method[J]. Science China: Earth Sciences, 2016, 59(2): 268−280. doi: 10.1007/s11430-015-5176-5
|
[6] |
Yamashiro T, Kawabe M. Monitoring of position of the Kuroshio axis in the Tokara Strait using sea level data[J]. Journal of Oceanography, 1996, 52(6): 675−687. doi: 10.1007/BF02239459
|
[7] |
Yamashiro T, Kawabe M. Variations of the Kuroshio axis south of Kyushu in relation to the large meander of the Kuroshio[J]. Journal of Oceanography, 2002, 58(3): 487−503. doi: 10.1023/A:1021265315858
|
[8] |
Ambe D, Imawaki S, Uchida H, et al. Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys[J]. Journal of Oceanography, 2004, 60(2): 375−382. doi: 10.1023/B:JOCE.0000038343.31468.fe
|
[9] |
Tseng Y H, Shen Maolin, Jan S, et al. Validation of the Kuroshio current system in the dual-domain Pacific Ocean model framework[J]. Progress in Oceanography, 2012, 105: 102−124. doi: 10.1016/j.pocean.2012.04.003
|
[10] |
Nan Feng, Xue Huijie, Yu Fei. Kuroshio intrusion into the South China Sea: a review[J]. Progress in Oceanography, 2015, 137: 314−333. doi: 10.1016/j.pocean.2014.05.012
|
[11] |
Haller G, Yuan G. Lagrangian coherent structures and mixing in two-dimensional turbulence[J]. Physica D: Nonlinear Phenomena, 2000, 147(3/4): 352−370.
|
[12] |
Peacock T, Dabiri J. Introduction to focus issue: Lagrangian coherent structures[J]. Chaos, 2010, 20(1): 017501. doi: 10.1063/1.3278173
|
[13] |
Peacock T, Haller G. Lagrangian coherent structures: the hidden skeleton of fluid flows[J]. Physics Today, 2013, 66(2): 41−47. doi: 10.1063/PT.3.1886
|
[14] |
Haller G. Lagrangian coherent structures[J]. Annual Review of Fluid Mechanics, 2015, 47: 137−162. doi: 10.1146/annurev-fluid-010313-141322
|
[15] |
Samelson R M. Lagrangian motion, coherent structures, and lines of persistent material strain[J]. Annual Review of Marine Science, 2013, 5: 137−163. doi: 10.1146/annurev-marine-120710-100819
|
[16] |
Hadjighasem A, Farazmand M, Blazevski D, et al. A critical comparison of Lagrangian methods for coherent structure detection[J]. Chaos, 2017, 27(5): 053104. doi: 10.1063/1.4982720
|
[17] |
Shadden S C, Lekien F, Marsden J E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows[J]. Physica D: Nonlinear Phenomena, 2005, 212(3/4): 271−304.
|
[18] |
d’Ovidio F, Fernández V, Hernández-García E, et al. Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents[J]. Geophysical Research Letters, 2004, 31(17): L17203.
|
[19] |
黄高龙, 韦惺, 詹海刚. 吕宋海峡浮标轨迹的拉格朗日拟序结构分析[J]. 热带海洋学报, 2015, 34(1): 15−22. doi: 10.3969/j.issn.1009-5470.2015.01.003
Huang Gaolong, Wei Xing, Zhan Haigang. Lagrangian analysis of drifter trajectories near the Luzon Strait[J]. Journal of Tropical Oceanography, 2015, 34(1): 15−22. doi: 10.3969/j.issn.1009-5470.2015.01.003
|
[20] |
Haller G. A variational theory of hyperbolic Lagrangian Coherent Structures[J]. Physica D: Nonlinear Phenomena, 2011, 240(7): 574−598. doi: 10.1016/j.physd.2010.11.010
|
[21] |
Farazmand M, Haller G. Computing Lagrangian coherent structures from their variational theory[J]. Chaos, 2012, 22(1): 013128. doi: 10.1063/1.3690153
|
[22] |
Farazmand M, Haller G. Attracting and repelling Lagrangian coherent structures from a single computation[J]. Chaos, 2013, 23(2): 023101. doi: 10.1063/1.4800210
|
[23] |
Farazmand M, Blazevski D, Haller G. Shearless transport barriers in unsteady two-dimensional flows and maps[J]. Physica D: Nonlinear Phenomena, 2014, 278-279: 44−57. doi: 10.1016/j.physd.2014.03.008
|
[24] |
Haller G, Beron-Vera F J. Coherent Lagrangian vortices: the black holes of turbulence[J]. Journal of Fluid Mechanics, 2013, 731: R4. doi: 10.1017/jfm.2013.391
|
[25] |
Wang Y, Olascoaga M J, Beron-Vera F J. Coherent water transport across the South Atlantic[J]. Geophysical Research Letters, 2015, 42(10): 4072−4079. doi: 10.1002/2015GL064089
|
[26] |
Beron-Vera F J, Olascoaga M J, Brown M G, et al. Invariant-tori-like Lagrangian coherent structures in geophysical flows[J]. Chaos, 2010, 20(1): 017514. doi: 10.1063/1.3271342
|
[27] |
Yuan G C, Pratt L J, Jones C K R T. Cross-jet lagrangian transport and mixing in a 2½-layer model[J]. Journal of Physical Oceanography, 2004, 34(9): 1991−2005. doi: 10.1175/1520-0485(2004)034<1991:CLTAMI>2.0.CO;2
|
[28] |
Beron-Vera F J, Olascoaga M J, Brown M G, et al. Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere[J]. Journal of the Atmospheric Sciences, 2012, 69(2): 753−767. doi: 10.1175/JAS-D-11-084.1
|
[29] |
Olascoaga M J, Beron-Vera F J, Haller G, et al. Drifter motion in the Gulf of Mexico constrained by altimetric Lagrangian coherent structures[J]. Geophysical Research Letters, 2013, 40(23): 6171−6175. doi: 10.1002/2013GL058624
|
[30] |
Copernicus Marine Environment Monitoring Service. SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047[DB/OL]. [2019–01–05]. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047
|
[31] |
NOAA‘s Atlantic Oceanographic and Meteorological Laboratory. Global Drifter Data[DB/OL].[2019–01–05]. http://www.aoml.noaa.gov/phod/gdp/science.php.
|
[32] |
Copernicus Marine Environment Monitoring Service. MULTIOBS_GLO_PHY_REP_015_002[DB/OL]. [2019–01–05]. http://marine.copernicus.eu/services-portfolio/access-to-products/?option=com_csw&view=details&product_id=MULTIOBS_GLO_PHY_REP_015_002.
|
[33] |
Onu K, Huhn F, Haller G. LCS tool: a computational platform for Lagrangian coherent structures[J]. Journal of Computational Science, 2015, 7: 26−36. doi: 10.1016/j.jocs.2014.12.002
|
[34] |
Duran R, Beron-Vera F J, Olascoaga M J. Extracting quasi-steady Lagrangian transport patterns from the ocean circulation: an application to the Gulf of Mexico[J]. Scientific Reports, 2018, 8: 5218. doi: 10.1038/s41598-018-23121-y
|
[35] |
Yu Hongfeng, Wang Chaoli, Shene C K, et al. Hierarchical streamline bundles[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(8): 1353−1367. doi: 10.1109/TVCG.2011.155
|
[36] |
王辉赞, 魏林进, 张全礼, 等. 台湾以东黑潮路径识别与变化规律[J]. 海洋与湖沼, 2018, 49(2): 271−279.
Wang Huizan, Wei Linjin, Zhang Quanli, et al. Identification of the Kuroshio path east of Taiwan and its variation[J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 271−279.
|
[37] |
于振娟. 东海黑潮流轴的变化及日本以南黑潮大弯曲同青岛降水量的关系[J]. 海洋科学, 1988(4): 6−11.
Yu Zhenjuan. Relationship of variation of axial position of the Kuroshio in the East China Sea and its meanders south of Japan with the precipitation in Qingdao[J]. Marine Science, 1988(4): 6−11.
|