Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 5
Nov.  2020
Turn off MathJax
Article Contents
Sun Jiawen,Fang Kezhao,Liu Zhongbo, et al. A review on the theory and application of Boussinesq-type equations for water waves[J]. Haiyang Xuebao,2020, 42(5):1–11,doi:10.3969/j.issn.0253−4193.2019.05.001
Citation: Sun Jiawen,Fang Kezhao,Liu Zhongbo, et al. A review on the theory and application of Boussinesq-type equations for water waves[J]. Haiyang Xuebao,2020, 42(5):1–11,doi:10.3969/j.issn.0253−4193.2019.05.001

A review on the theory and application of Boussinesq-type equations for water waves

doi: 10.3969/j.issn.0253-4193.2020.05.001
  • Received Date: 2019-04-17
  • Rev Recd Date: 2019-09-14
  • Available Online: 2020-11-18
  • Publish Date: 2020-05-25
  • Boussinesq-type equation is one of the important tools for simulating the propagation and evolution of water waves. The theoretical derivation and numerical application of the Boussinesq-type water wave equation dating back to 1967 are reviewed with the hope of promoting its deep development and application in the fields of coastal and ocean engineering. From the theoretical point of view, the derivation of such equations mainly starts from Euler equations or Laplace equations. Under the conditions of certain nonlinearity and gentle slope assumptions, a variety of Boussinesq-type water wave equations have been proposed worldwide. Through the comparisons with the related theories of Stokes waves, these equations are investigated with respect to phase velocity, group velocity, linear shoaling gradient, second-order nonlinearity, third-order nonlinearity, dispersion characteristics due to amplitude dispersion, velocity distribution along the vertical column, sub- and super harmonics etc. The majority of Boussinesq-type equations in literature for waves are reviewed and grouped into two categories, namely horizontal two-dimensional type and three-dimensional type. The usage of Boussinesq-type equations involved with permeable media and the presence of fluid stratification are also briefly described and commented. Finally, the application of these equations is summarized and analyzed.

  • loading
  • [1]
    Boussinesq J. Théorie des ondes et de remous qui se propagent le dong d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce danal des vitesses sensiblement paralleles de la surface au fond[J]. Journal de Mathematique Pures et Appliquées, 1872, 17: 55−108.
    [2]
    Peregrine D H. Long waves on a beach[J]. Journal of Fluid Mechanics, 1967, 27(4): 815−827. doi: 10.1017/S0022112067002605
    [3]
    Witting J M. A unified model for the evolution of nonlinear water waves[J]. Journal of Computational Physics, 1984, 56(2): 203−236. doi: 10.1016/0021-9991(84)90092-5
    [4]
    Madsen P A, Murray R, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics[J]. Coastal Engineering, 1991, 15(4): 371−388. doi: 10.1016/0378-3839(91)90017-B
    [5]
    Madsen P A, Sørensen O R. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry[J]. Coastal Engineering, 1992, 18(3/4): 183−204.
    [6]
    Nwogu O. Alternative form of Boussinesq equations for nearshore wave propagation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1993, 119(6): 618−638. doi: 10.1061/(ASCE)0733-950X(1993)119:6(618)
    [7]
    Schäffer H A, Madsen P A. Further enhancements of Boussinesq-type equations[J]. Coastal Engineering, 1995, 26(1/2): 1−14.
    [8]
    Chen Y Z, Liu P L F. Modified Boussinesq equations and associated parabolic models for water wave propagation[J]. Journal of Fluid Mechanics, 1995, 288: 351−381. doi: 10.1017/S0022112095001170
    [9]
    Beji S, Nadaoka K. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth[J]. Ocean Engineering, 1996, 23(8): 691−704. doi: 10.1016/0029-8018(96)84408-8
    [10]
    林建国, 邱大洪, 邹志利. 新型Boussinesq方程的进一步改善[J]. 海洋学报, 1998, 20(2): 113−119.

    Lin Jianguo, Qiu Dahong, Zou Zhili. Further improvement of new Boussinesq-type equations[J]. Haiyang Xuebao, 1998, 20(2): 113−119.
    [11]
    张永刚, 李玉成. 一种新型式的Boussinesq方程[J]. 科学通报, 1997, 42(21): 2332−2334. doi: 10.1360/csb1997-42-21-2332

    Zhang Yonggang, Li Yucheng. A new type of Boussinesq equation[J]. Chinese Science Bulletin, 1997, 42(21): 2332−2334. doi: 10.1360/csb1997-42-21-2332
    [12]
    Zhao M, Teng B, Cheng L. A new form of generalized Boussinesq equations for varying water depth[J]. Ocean Engineering, 2004, 31(16): 2047−2072. doi: 10.1016/j.oceaneng.2004.03.010
    [13]
    Schäffer H A. Discussion of "a formal derivation and numerical modelling of the improved Boussinesq equations for varying depth"[J]. Ocean Engineering, 1998, 25(6): 497−500. doi: 10.1016/S0029-8018(97)00031-0
    [14]
    Zou Z L. Higher order Boussinesq equations[J]. Ocean Engineering, 1999, 26(8): 767−792. doi: 10.1016/S0029-8018(98)00019-5
    [15]
    Zou Z L. A new form of higher order Boussinesq equations[J]. Ocean Engineering, 2000, 27(5): 557−575. doi: 10.1016/S0029-8018(99)00007-4
    [16]
    Lynett P, Liu P L F. A two-layer approach to wave modeling[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 460(2049): 2637−2669. doi: 10.1098/rspa.2004.1305
    [17]
    Liu Z B, Sun Z C. Two sets of higher-order Boussinesq-type equations for water waves[J]. Ocean Engineering, 2005, 32(11/12): 1296−1310.
    [18]
    Galan A, Simarro G, Orifila A, et al. Fully nonlinear model for water wave propagation from deep to shallow waters[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2012, 138(5): 362−371. doi: 10.1061/(ASCE)WW.1943-5460.0000143
    [19]
    Simarro G, Orfila A, Galan A. Linear shoaling in Boussinesq-type wave propagation models[J]. Coastal Engineering, 2013, 80: 100−106. doi: 10.1016/j.coastaleng.2013.05.009
    [20]
    刘忠波, 房克照, 程永舟. Boussinesq水波方程变浅性能的改进[C]//第十七届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2015: 256−262.

    Liu Zhongbo, Fang Kezhao, Cheng Yongzhou. Improvement of the shoaling performance of Boussinesq equations[C]//Proceedings of the 17th China Oceanographic (Offshore) Engineering Symposium (Part 1). Beijing: China Ocean Press, 2015: 256−262.
    [21]
    Wei G, Kirby J T, Grilli S T, et al. A fully nonlinear Boussinesq model for surface waves. Part I. Highly nonlinear unsteady waves[J]. Journal of Fluid Mechanics, 1995, 294: 71−92. doi: 10.1017/S0022112095002813
    [22]
    Simarro G. Discussion to “Boussinesq modeling of longshore currents in the SandyDuck experiment under directional random wave conditions” by J. Choi, J. T. Kirby and S. B Yoon[J]. Coastal Engineering, 2015, 106: 30−31. doi: 10.1016/j.coastaleng.2015.09.008
    [23]
    Choi J, Kirby J T, Yoon S B. Reply to “Discussion to ‘Boussinesq modeling of longshore currents in the Sandy Duck experiment under directional random wave conditions’ by J. Choi, J. T. Kirby and S. B Yoon”[J]. Coastal Engineering, 2015, 106: 4−6. doi: 10.1016/j.coastaleng.2015.09.002
    [24]
    Madsen P A, Schäffer H A. Higher-order Boussinesq-type equations for surface gravity waves: derivation and analysis[J]. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 356(1749): 3123−3181. doi: 10.1098/rsta.1998.0309
    [25]
    Chondros M K, Memos C D. A 2DH nonlinear Boussinesq-type wave model of improved dispersion, shoaling, and wave generation characteristics[J]. Coastal Engineering, 2014, 91: 99−122. doi: 10.1016/j.coastaleng.2014.05.007
    [26]
    Liu Z B, Fang K Z. Discussion of “A 2DH nonlinear Boussinesq-type wave model of improved dispersion, shoaling, and wave generation characteristics” by Chondros and Memo[J]. Coastal Engineering, 2015, 95: 1−3. doi: 10.1016/j.coastaleng.2014.09.005
    [27]
    邹志利. 高阶Boussinesq水波方程[J]. 中国科学:E辑, 1997, 27(5): 460−473.

    Zou Zhili. Higher-order Boussinesq wave equations[J]. Science in China: Series E, 1997, 27(5): 460−473.
    [28]
    邹志利. 高阶Boussinesq水波方程的改进[J]. 中国科学: E辑, 1999, 29(1): 87−96.

    Zou Zhili. Improvement of higher order Boussinesq wave equations[J]. Science in China : Series E, 1999, 29(1): 87−96.
    [29]
    邹志利. 适合复杂地形的高阶Boussinesq水波方程[J]. 海洋学报, 2001, 23(1): 109−119.

    Zou Zhili. Higher-order Boussinesq equations for rapidly varying topography[J]. Haiyang Xuebao, 2001, 23(1): 109−119.
    [30]
    Gobbi M F, Kirby J T, Wei G. A fully nonlinear Boussinesq model for surface waves. Part 2. Extension to O(kh)4[J]. Journal of Fluid Mechanics, 2000, 405: 181−210. doi: 10.1017/S0022112099007247
    [31]
    Zou Z L, Fang K Z. Alternative forms of the higher-order Boussinesq equations: derivations and validations[J]. Coastal Engineering, 2008, 55(6): 506−521. doi: 10.1016/j.coastaleng.2008.02.001
    [32]
    Lynett P J, Liu P L F. Linear analysis of the multi-layer model[J]. Coastal Engineering, 2004, 51(5/6): 439−454.
    [33]
    Liu Z B, Fang K Z. Two-layer Boussinesq models for coastal water waves[J]. Wave Motion, 2015, 57: 88−111. doi: 10.1016/j.wavemoti.2015.03.006
    [34]
    林建国, 邱大洪. 二阶非线性与色散性的Boussinesq类方程[J]. 中国科学: E辑, 1998, 28(6): 567−573.

    Lin Jianguo, Qiu Dahong. Boussinesq wave equations with second order nonlinear and dispersive[J]. Science in China: Series E, 1998, 28(6): 567−573.
    [35]
    Hong G W. High-order models of nonlinear and dispersive wave in water of varying depth with arbitrary sloping bottom[J]. China Ocean Engineering, 1997, 11(3): 243−260.
    [36]
    Kennedy A B, Kirby J T, Chen Q, et al. Boussinesq-type equations with improved nonlinear performance[J]. Wave Motion, 2001, 33(3): 225−243. doi: 10.1016/S0165-2125(00)00071-8
    [37]
    刘忠波, 房克照, 邹志利. 近似到O(μ2)阶完全非线性的Boussinesq水波方程[J]. 哈尔滨工程大学学报, 2012, 33(5): 556−561. doi: 10.3969/j.issn.1006-7043.201109026

    Liu Zhongbo, Fang Kezhao, Zou Zhili. Boussinesq wave equations with fully nonlinear characteristics at order O(μ2)[J]. Journal of Harbin Engineering University, 2012, 33(5): 556−561. doi: 10.3969/j.issn.1006-7043.201109026
    [38]
    Fang K Z, Liu Z B, Gui Q Q, et al. Alternative forms of enhanced Boussinesq equations with improved nonlinearity[J]. Mathematical Problems in Engineering, 2013: 160749.
    [39]
    Agnon Y, Madsen P A, Schäffer H A. A new approach to high order Boussinesq models[J]. Journal of Fluid Mechanics, 1999, 399: 319−333. doi: 10.1017/S0022112099006394
    [40]
    Madsen P A, Bingham H B, Liu H. A new Boussinesq method for fully nonlinear waves from shallow to deep water[J]. Journal of Fluid Mechanics, 2002, 462: 1−30. doi: 10.1017/S0022112002008467
    [41]
    Madsen P A, Bingham H B, Schäffer H A. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: derivation and analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2003, 459(2033): 1075−1104. doi: 10.1098/rspa.2002.1067
    [42]
    Chazel F, Benoit M, Ern A, et al. A double-layer Boussinesq-type model for highly nonlinear and dispersive waves[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2010, 465(2108): 2319−2346.
    [43]
    刘忠波, 房克照, 孙昭晨. 适合极端深水的双层高阶Boussinesq水波方程[J]. 哈尔滨工程大学学报, 2016, 37(8): 997−1002.

    Liu Zhongbo, Fang Kezhao, Sun Zhaochen. Two-layer high-order Boussinesq model for water waves in extremely deep water[J]. Journal of Harbin Engineering University, 2016, 37(8): 997−1002.
    [44]
    Liu Z B, Fang K Z. A new two-layer Boussinesq model for coastal waves from deep to shallow water: derivation and analysis[J]. Wave Motion, 2016, 67: 1−14. doi: 10.1016/j.wavemoti.2016.07.002
    [45]
    Liu Z B, Fang K Z, Cheng Y Z. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed[J]. Journal of Fluid Mechanics, 2018, 842: 323−853. doi: 10.1017/jfm.2018.99
    [46]
    Cruz E C, Isobe M, Watanabe A. Boussinesq equations for wave transformation on porous beds[J]. Coastal Engineering, 1997, 30(1/2): 125−156.
    [47]
    Hsiao S C, Liu P L F, Chen Y Z. Nonlinear water waves propagating over a permeable bed[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2022): 1291−1322. doi: 10.1098/rspa.2001.0903
    [48]
    Chen Q. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds[J]. Journal of Engineering Mechanics, 2006, 132(2): 220−230. doi: 10.1061/(ASCE)0733-9399(2006)132:2(220)
    [49]
    刘忠波, 孙昭晨. 波浪在渗透海床上传播的数学模型[J]. 中国科技论文在线, 2011, 6(5): 374−379.

    Liu Zhongbo, Sun Zhaochen. Wave propagating model over a porous seabed[J]. Sciencepaper Online, 2011, 6(5): 374−379.
    [50]
    刘忠波, 房克照, 孙昭晨. 适合渗透海床上的Boussinesq水波数学模型[J]. 广西大学学报: 自然科学版, 2012, 37(5): 870−875.

    Liu Zhongbo, Fang Kezhao, Sun Zhaochen. A Boussinesq model for water waves over permeable seabed[J]. Journal of Guangxi University: Natural Science Edition, 2012, 37(5): 870−875.
    [51]
    刘忠波, 孙昭晨, 房克照. 波浪在渗透海床上传播的数学模型及其验证[J]. 大连理工大学学报, 2013, 53(3): 417−422. doi: 10.7511/dllgxb201303017

    Liu Zhongbo, Sun Zhaochen, Fang Kezhao. Mathematical model for wave propagation over a porous seabed and its numerical validation[J]. Journal of Dalian University of Technology, 2013, 53(3): 417−422. doi: 10.7511/dllgxb201303017
    [52]
    刘忠波, 房克照, 孙昭晨. 适合可渗海床上波浪传播的高阶Boussinesq方程[J]. 哈尔滨工程大学学报, 2013, 34(9): 1100−1107.

    Liu Zhongbo, Fang Kezhao, Sun Zhaochen. High order Boussinesq equations for wave propagation over permeable seabed[J]. Journal of Harbin Engineering University, 2013, 34(9): 1100−1107.
    [53]
    Hsiao S C, Hu K C, Hwung H H. Extended Boussinesq equations for water-wave propagation in porous media[J]. Journal of Engineering Mechanics, 2010, 136(5): 625−640. doi: 10.1061/(ASCE)EM.1943-7889.0000098
    [54]
    刘忠波, 房克照, 孙昭晨, 等. 双层多孔介质中波浪传播的高阶Boussinesq方程[C]//第十六届海洋(岸)工程学术讨论会论文集. 北京: 海洋出版社, 2013: 597-605.

    Liu Zhongbo, Fang Kezhao, Sun Zhaochen, et al. Higher order Boussinesq equation for wave propagation in double layer porous media[C]//Proceedings of the 16th China Oceanographic (Offshore) Engineering Symposium. Beijing : China Ocean Press, 2013: 597-605.
    [55]
    Choi W, Camassa R. Weakly nonlinear internal waves in a two-fluid system[J]. Journal of Fluid Mechanics, 1996, 313: 83−103. doi: 10.1017/S0022112096002133
    [56]
    Choi W, Camassa R. Fully nonlinear internal waves in a two-fluid system[J]. Journal of Fluid Mechanics, 1999, 396: 1−36. doi: 10.1017/S0022112099005820
    [57]
    Lynett P J, Liu P L F. A two-dimensional, depth-integrated model for internal wave propagation over variable bathymetry[J]. Wave Motion, 2002, 36(3): 221−240. doi: 10.1016/S0165-2125(01)00115-9
    [58]
    Song J B. A set of Boussinesq-type equations for interfacial internal waves in two-layer stratified fluid[J]. Chinese Physics, 2006, 15(12): 2796−2803. doi: 10.1088/1009-1963/15/12/006
    [59]
    Liu C M, Lin M C, Kong C H. Essential properties of Boussinesq equations for internal and surface waves in a two-fluid system[J]. Ocean Engineering, 2008, 35(2): 230−246. doi: 10.1016/j.oceaneng.2007.08.006
    [60]
    Yang H L, Yang L G, Song J B, et al. Higher-order Boussinesq-type equations for interfacial waves in a two-fluid system[J]. Acta Oceanologica Sinica, 2009, 28(4): 118−124.
    [61]
    Liu P L F, Wang X M. A multi-layer model for nonlinear internal wave propagation in shallow water[J]. Journal of Fluid Mechanics, 2012, 695: 341−365. doi: 10.1017/jfm.2012.24
    [62]
    Brocchini M. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2013, 469(2160): 20130496. doi: 10.1098/rspa.2013.0496
    [63]
    Kirby J T. Boussinesq models and their application to coastal processes across a wide range of scales[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2016, 142(6): 03116005. doi: 10.1061/(ASCE)WW.1943-5460.0000350
    [64]
    Tavakkol S, Lynett P. Celeris: a GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization[J]. Computer Physics Communications, 2017, 217: 117−127. doi: 10.1016/j.cpc.2017.03.002
    [65]
    Chen Q, Dalrymple R A, Kirby J T, et al. Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research: Oceans, 1999, 104(C9): 20617−20637. doi: 10.1029/1999JC900154
    [66]
    Chen Q, Kirby J T, Dalrymple R A, et al. Boussinesq modeling of longshore currents[J]. Journal of Geophysical Research: Oceans, 2003, 108(C11): 3362. doi: 10.1029/2002JC001308
    [67]
    房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26(4): 479−486.

    Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26(4): 479−486.
    [68]
    房克照, 刘忠波, 邹志利, 等. 波生沿岸流数值模拟[J]. 水科学进展, 2013, 24(2): 258−265.

    Fang Kezhao, Liu Zhongbo, Zou Zhili, et al. Numerical simulation of longshore currents[J]. Advances in Water Science, 2013, 24(2): 258−265.
    [69]
    邹志利. 含强水流高阶Boussinesq水波方程[J]. 海洋学报, 2000, 22(4): 41−50.

    Zou Zhili. Higher-order Boussinesq equations with strong currents[J]. Haiyang Xuebao, 2000, 22(4): 41−50.
    [70]
    Fuhrman D R, Madsen P A. Tsunami generation, propagation, and run-up with a high-order Boussinesq model[J]. Coastal Engineering, 2009, 56(7): 747−758. doi: 10.1016/j.coastaleng.2009.02.004
    [71]
    Zhao X, Wang B H, Liu H. Modelling the submarine mass failure induced Tsunamis by Boussinesq equations[J]. Journal of Asian Earth Sciences, 2009, 36(1): 47−55. doi: 10.1016/j.jseaes.2008.12.005
    [72]
    Zhou H Q, Teng M H. Extended fourth-order depth-integrated model for water waves and currents generated by submarine landslides[J]. Journal of Engineering Mechanics, 2010, 136(4): 506−516. doi: 10.1061/(ASCE)EM.1943-7889.0000087
    [73]
    Lynet P, Liu P L F. A numerical study of submarine-landslide-generated waves and run-up[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, 458(2028): 2885−2910. doi: 10.1098/rspa.2002.0973
    [74]
    Zou Z L, Liu Z B, Fang K Z. Further improvements to the higher-order Boussinesq equations: bragg reflection[J]. Coastal Engineering, 2009, 56(5/6): 672−687.
    [75]
    Qi P, Wang Y X. Hydraulic modeling of a curtain-walled dissipater by the coupling of RANS and Boussinesq equations[J]. China Ocean Engineering, 2002, 16(2): 201−210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article views (43) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return