Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Liang Chao,Liu Li,Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao,2020, 42(4):104–112,doi:10.3969/j.issn.0253−4193.2020.04.012
Citation: Liang Chao,Liu Li,Liu Jianqiang, et al. Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data[J]. Haiyang Xuebao,2020, 42(4):104–112,doi:10.3969/j.issn.0253−4193.2020.04.012

Extracting mangrove information using MNF transformation based on HY-1C CZI spectral indices reconstruction data

doi: 10.3969/j.issn.0253-4193.2020.04.012
  • Received Date: 2019-05-17
  • Rev Recd Date: 2019-08-21
  • Available Online: 2020-11-18
  • Publish Date: 2020-04-25
  • In this study, we first used the spectral vegetation indices such as normalized difference vegetation index (NDVI), normalized difference water index (NDWI), atmospheric impedance vegetation index (ARPI) and visible spectrum slope ratio of coastal zone imager (CVSSR) to reconstruct the HY-1C coastal zone imager (CZI) image data of the Shankou mangrove national ecosystem nature reserve in Guangxi. And then, the minimum noise fraction rotation (MNF) was used to enhance the spectral difference between mangroves and general terrestrial vegetation on the reconstructed multi-band data set. We established a decision tree based on the MNF components to achieve automatic extracting mangrove information. The results show that the spectral indices reconstruction data and its MNF transformation can effectively enhance the difference between the mangroves and the general terrestrial vegetation on CZI images, the mangrove information can be effectively extracted by our decision tree. Compared with the experts’ interpretation results, the extracted accuracy of area of our method is over 90%. The overall detection accuracy is 88% after verification by random sample points.
  • loading
  • [1]
    Aschbacher J, Ofren R, Delsol J P, et al. An integrated comparative approach to mangrove vegetation mapping using advanced remote sensing and GIS technologies: preliminary results[J]. Hydrobiologia, 1995, 295: 285−294. doi: 10.1007/BF00029135
    [2]
    Green E P, Clark C D, Mumby A J, et al. Remote sensing techniques for mangrove mapping[J]. International Journal of Remote Sensing, 1998, 19(5): 935−956. doi: 10.1080/014311698215801
    [3]
    Green E P, Mumby P J, Edwards A J, et al. The assessment of mangrove areas using high resolution multispectral airborne imagery[J]. Journal of Coastal Research, 1998, 14(2): 433−443.
    [4]
    Wang Lanfa, Sousa W, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24): 5655−5668. doi: 10.1080/014311602331291215
    [5]
    肖海燕, 曾辉, 昝启杰, 等. 基于高光谱数据和专家决策法提取红树林群落类型信息[J]. 遥感学报, 2007, 11(4): 531−537. doi: 10.11834/jrs.20070473

    Xiao Haiyan, Zeng Hui, Zan Qijie, et al. Decision tree model in extraction of mangrove community information using hyperspectral image data[J]. Journal of Remote Sensing, 2007, 11(4): 531−537. doi: 10.11834/jrs.20070473
    [6]
    张雪红. 基于知识与规则的红树林遥感信息提取[J]. 南京信息工程大学学报, 2011, 3(4): 341−345. doi: 10.3969/j.issn.1674-7070.2011.04.005

    Zhang Xuehong. Remote sensing information extraction of mangrove based on knowledge and rules[J]. Journal of Nanjing University of Information Science & Technology, 2011, 3(4): 341−345. doi: 10.3969/j.issn.1674-7070.2011.04.005
    [7]
    Heumann B W. Satellite remote sensing of mangrove forests: recent advances and future opportunities[J]. Progress in Physical Geography: Earth and Environment, 2011, 35(1): 87−108. doi: 10.1177/0309133310385371
    [8]
    张雪红. 基于决策树方法的Landsat8 OLI影像红树林信息自动提取[J]. 国土资源遥感, 2016, 28(2): 182−187. doi: 10.6046/gtzyyg.2016.02.28

    Zhang Xuehong. Decision tree algorithm of automatically extracting mangrove forests information from Landsat 8 OLI imagery[J]. Remote Sensing for Land & Resources, 2016, 28(2): 182−187. doi: 10.6046/gtzyyg.2016.02.28
    [9]
    Giri C. Observation and monitoring of mangrove forests using remote sensing: opportunities and Challenges[J]. Remote Sensing, 2016, 8(9): 783. doi: 10.3390/rs8090783
    [10]
    Cao Jingjing, Leng Wanchun, Liu Kai, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(1): 89.
    [11]
    Abdel-Hamid A, Dubovyk O, El-Magd I, et al. Mapping mangroves extents on the red sea coastline in Egypt using polarimetric SAR and high resolution optical remote sensing data[J]. Sustainability, 2018, 10(3): 646. doi: 10.3390/su10030646
    [12]
    Zulfa A W, Norizah K. Remotely sensed imagery data application in mangrove forest: a review[J]. Pertanika Journal of Science & Technology, 2018, 26(3): 899−922.
    [13]
    Wang Le, Jia Mingming, Yin Dameng, et al. A review of remote sensing for mangrove forests: 1956-2018[J]. Remote Sensing of Environment, 2019, 231: 111223. doi: 10.1016/j.rse.2019.111223
    [14]
    Pham T D, Yokoya N, Bui D T, et al. Remote sensing approaches for monitoring mangrove species, structure, and biomass: opportunities and challenges[J]. Remote Sensing, 2019, 11(3): 230. doi: 10.3390/rs11030230
    [15]
    Markham B L, Barker J L. Thematic Mapper bandpass solar exoatmospheric irradiances[J]. International Journal of Remote Sensing, 1987, 8(3): 517−523. doi: 10.1080/01431168708948658
    [16]
    田庆久, 闵祥军. 植被指数研究进展[J]. 地球科学进展, 1998, 13(4): 327−333. doi: 10.3321/j.issn:1001-8166.1998.04.002

    Tian Qingjiu, Min Xiangjun. Advances in study on vegetation indices[J]. Advance in Earth Sciences, 1998, 13(4): 327−333. doi: 10.3321/j.issn:1001-8166.1998.04.002
    [17]
    郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003, 21(4): 71−75.

    Guo Ni. Vegetation index and its advances[J]. Arid Meteorology, 2003, 21(4): 71−75.
    [18]
    Muhsoni F F, Sambah A B, Mahmudi M, et al. Comparison of different vegetation indices for assessing mangrove density using sentinel-2 imagery[J]. International Journal of Geomate, 2018, 14(45): 42−51.
    [19]
    Gupta K, Mukhopadhyay A, Giri S, et al. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery[J]. MethodsX, 2018, 5: 1129−1139. doi: 10.1016/j.mex.2018.09.011
    [20]
    Green A A, Berman M, Switzer P, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1): 65−74. doi: 10.1109/36.3001
    [21]
    Boardman J W, Kruse F A. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada[C]//Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing. Ann Arbor, MI: Environmental Research Institute of Michigan, 1994: 407−418.
    [22]
    Richards J A. Remote Sensing Digital Image Analysis[M]. Berlin: Springer, 2013: 186−189.
    [23]
    Canty M J. Image Analysis, Classification and Change Detection in Remote Sensing: with Algorithms for ENVI/IDL[M]. New York: CRC Press, 2014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article views (290) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return