Citation: | Sun Youfang,Jiang Lei,Lei Xinming, et al. Effects of ocean acidification and warming on the larvae settlement and post-settlement survival of two reef-building corals[J]. Haiyang Xuebao,2020, 42(4):96–103,doi:10.3969/j.issn.0253−4193.2020.04.011 |
[1] |
Orr J C. Recent and future changes in ocean carbonate chemistry[M]//Gattuso J P, Hansson L. Ocean Acidification. Oxford: Oxford University Press, 2011: 41−66.
|
[2] |
Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5682): 367−371. doi: 10.1126/science.1097403
|
[3] |
Collins M, Knutti R, Arblaser J, et al. Long-term climate change: projections, commitments and irreversibility[M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013.
|
[4] |
Friedlingstein P, Andrew R M, Rogelj J, et al. Persistent growth of CO2 emissions and implications for reaching climate targets[J]. Nature Geoscience, 2014, 7(10): 709−715. doi: 10.1038/ngeo2248
|
[5] |
IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014.
|
[6] |
Huang Hui, Yuan Xiangcheng, Cai Weijun, et al. Positive and negative responses of coral calcification to elevated pCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series, 2014, 502: 145−156. doi: 10.3354/meps10720
|
[7] |
Watson S A, Southgate P C, Miller G M, et al. Ocean acidification and warming reduce juvenile survival of the fluted giant clam, Tridacna squamosa[J]. Molluscan Research, 2012, 32(3): 177−180.
|
[8] |
Timmins-Schiffman E, O'Donnell M J, Friedman C S, et al. Elevated pCO2 causes developmental delay in early larval Pacific oysters, Crassostrea gigas[J]. Marine Biology, 2013, 160(8): 1973−1982. doi: 10.1007/s00227-012-2055-x
|
[9] |
Hughes T P, Kerry J T, Álvarez-Noriega M, et al. Global warming and recurrent mass bleaching of corals[J]. Nature, 2017, 543(7645): 373−377. doi: 10.1038/nature21707
|
[10] |
Zheng Xinqing, Kuo Fuwen, Pan Ke, et al. Different calcification responses of two hermatypic corals to CO2-driven ocean acidification[J]. Environmental Science and Pollution Research, 2019, 26(7): 30596−30602 . doi: 10.1007/s11356-018-1376-9
|
[11] |
郑新庆, 郭富雯, 刘昕明, 等. 海洋酸化没有显著影响成体鹿角杯形珊瑚的钙化作用和光合能力[J]. 海洋学报, 2015, 37(10): 59−68.
Zheng Xinqing, Kuo Fuwen, Liu Xinming, et al. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis[J]. Haiyang Xuebao, 2015, 37(10): 59−68.
|
[12] |
Cossins A R, Bowler K. Temperature Biology of Animals[M]. Dordrecht, Netherlands: Springer, 1987.
|
[13] |
Ritson-Williams R, Arnold S N, Fogarty N D, et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs[J]. Smithsonian Contributions to the Marine Sciences, 2009, 38: 437−457.
|
[14] |
Harrison P L. Sexual reproduction of scleractinian corals[M]//Dubinsky Z, Stambler N. Coral Reefs: An Ecosystem in Transition. Dordrecht: Springer, 2011: 59−85.
|
[15] |
Edmunds P, Gates R, Gleason D. The biology of larvae from the reef coral Porites astreoides, and their response to temperature disturbances[J]. Marine Biology, 2001, 139(5): 981−989. doi: 10.1007/s002270100634
|
[16] |
Hughes T P, Tanner J E. Recruitment failure, life histories, and long-term decline of Caribbean corals[J]. Ecology, 2000, 81(8): 2250−2263. doi: 10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2
|
[17] |
Richmond R H. Reproduction and recruitment in corals: critical links in the persistence of reefs[M]//Birkeland C. Life and Death of Coral Reefs. New York: Chapman and Hall, 1997.
|
[18] |
Harrison P L, Wallace C C. Reproduction, dispersal and recruitment of scleractinian corals[M]//Dubinsky Z. Coral Reefs Ecosystems. Amsterdam: Elsevier, 1990: 133−207.
|
[19] |
Randall C J, Szmant A M. Elevated temperature reduces survivorship and settlement of the larvae of the Caribbean scleractinian coral, Favia fragum (Esper)[J]. Coral Reefs, 2009, 28(2): 537−545.
|
[20] |
Hillyer K E, Dias D A, Lutz A, et al. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera[J]. Coral Reefs, 2017, 36(1): 105−118. doi: 10.1007/s00338-016-1508-y
|
[21] |
Nozawa Y, Harrison P L. Effects of elevated temperature on larval settlement and post-settlement survival in scleractinian corals, Acropora solitaryensis and Favites chinensis[J]. Marine Biology, 2007, 152(5): 1181−1185. doi: 10.1007/s00227-007-0765-2
|
[22] |
Jiang Lei, Sun Youfang, Zhang Yuyang, et al. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis[J]. Biogeosciences, 2017, 14(24): 5741−5752. doi: 10.5194/bg-14-5741-2017
|
[23] |
Wall C B, Fan T Y, Edmunds P J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum[J]. Coral Reefs, 2014, 33(1): 119−130. doi: 10.1007/s00338-013-1085-2
|
[24] |
Albright R, Mason B, Miller M, et al. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47): 20400−20404. doi: 10.1073/pnas.1007273107
|
[25] |
Doropoulos C, Diaz-Pulido G. High CO2 reduces the settlement of a spawning coral on three common species of crustose coralline algae[J]. Marine Ecology Progress Series, 2013, 475: 93−99. doi: 10.3354/meps10096
|
[26] |
Albright R, Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coral Porites astreoides[J]. Global Change Biology, 2011, 17(7): 2478−2487. doi: 10.1111/j.1365-2486.2011.02404.x
|
[27] |
Foster T, Gilmour J P, Chua C M, et al. Effect of ocean warming and acidification on the early life stages of subtropical Acropora spicifera[J]. Coral Reefs, 2015, 34(4): 1217−1226. doi: 10.1007/s00338-015-1342-7
|
[28] |
Webster N S, Webb R I, Ridd M J, et al. The effects of copper on the microbial community of a coral reef sponge[J]. Environmental Microbiology, 2001, 3(1): 19−31. doi: 10.1046/j.1462-2920.2001.00155.x
|
[29] |
Tebben J, Tapiolas D M, Motti C A, et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium[J]. PLoS One, 2011, 6(4): e19082. doi: 10.1371/journal.pone.0019082
|
[30] |
Heyward A J, Negri A P. Natural inducers for coral larval metamorphosis[J]. Coral Reefs, 1999, 18(3): 273−279. doi: 10.1007/s003380050193
|
[31] |
Siboni N, Abrego D, Motti C A, et al. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora[J]. PLoS One, 2014, 9(3): e91082. doi: 10.1371/journal.pone.0091082
|
[32] |
Li Xiubao, Liu Sheng, Huang Hui, et al. Coral bleaching caused by an abnormal water temperature rise at Luhuitou fringing reef, Sanya Bay, China[J]. Aquatic Ecosystem Health & Management, 2012, 15(2): 227−233.
|
[33] |
Baird A H, Gilmour J P, Kamiki T M, et al. Temperature tolerance of symbiotic and non-symbiotic coral larvae[C]//Proceedings of the 10th International Coral Reef Symposium. Okinawa, Japan: ICRS, 2006.
|
[34] |
Yakovleva I, Baird A H, Yamamoto H H, et al. Algal symbionts increase oxidative damage and death in coral larvae at high temperatures[J]. Marine Ecology Progress Series, 2009, 378: 105−112. doi: 10.3354/meps07857
|
[35] |
江雷, 黄晖, 张浴阳, 等. 海水升温对壮实鹿角珊瑚幼虫存活和附着的影响[J]. 应用海洋学学报, 2016, 35(2): 217−222. doi: 10.3969/J.ISSN.2095-4972.2016.02.010
Jiang Lei, Huang Hui, Zhang Yuyang, et al. Effects of elevated temperature on larval survival and settlement of the broadcast spawning coral Acropora robust[J]. Journal of Applied Oceanography, 2016, 35(2): 217−222. doi: 10.3969/J.ISSN.2095-4972.2016.02.010
|
[36] |
Olsen K, Ritson-Williams R, Paul V J, et al. Combined effects of macroalgal presence and elevated temperature on the early life-history stages of a common Caribbean coral[J]. Marine Ecology Progress Series, 2014, 509: 181−191. doi: 10.3354/meps10880
|
[37] |
Viyakarn V, Lalitpattarakit W, Chinfak N, et al. Effect of lower pH on settlement and development of coral, Pocillopora damicornis (Linnaeus, 1758)[J]. Ocean Science Journal, 2015, 50(2): 475−480. doi: 10.1007/s12601-015-0043-z
|
[38] |
Suwa R, Nakamura M, Morita M, et al. Effects of acidified seawater on early life stages of scleractinian corals (Genus Acropora)[J]. Fisheries Science, 2010, 76(1): 93−99. doi: 10.1007/s12562-009-0189-7
|
[39] |
Putnam H M, Mayfield A B, Fan T Y, et al. The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2[J]. Marine Biology, 2013, 160(8): 2157−2173. doi: 10.1007/s00227-012-2129-9
|
[40] |
Cumbo V R, Fan T Y, Edmunds P J. Effects of exposure duration on the response of Pocillopora damicornis larvae to elevated temperature and high pCO2[J]. Journal of Experimental Marine Biology and Ecology, 2013, 439: 100−107. doi: 10.1016/j.jembe.2012.10.019
|
[41] |
Marshall D J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history[J]. Ecology, 2008, 89(2): 418−427. doi: 10.1890/07-0449.1
|
[42] |
Jiang Lei, Huang Hui, Yuan Xiangcheng, et al. Effects of elevated pCO2 on the post-settlement development of Pocillopora damicornis[J]. Journal of Experimental Marine Biology and Ecology, 2015, 473: 169−175. doi: 10.1016/j.jembe.2015.09.004
|
[43] |
Jiang Lei, Zhang Fang, Guo Minglan, et al. Increased temperature mitigates the effects of ocean acidification on the calcification of juvenile Pocillopora damicornis, but at a cost[J]. Coral Reefs, 2018, 37(1): 71−79. doi: 10.1007/s00338-017-1634-1
|
[44] |
Anlauf H, D'Croz L, O'Dea A. A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative[J]. Journal of Experimental Marine Biology and Ecology, 2011, 397(1): 13−20. doi: 10.1016/j.jembe.2010.11.009
|
[45] |
Cohen A L, McCorkle D C, de Putron S, et al. Morphological and compositional changes in the skeletons of new coral recruits reared in acidified seawater: insights into the biomineralization response to ocean acidification[J]. Geochemistry, Geophysics, Geosystems, 2009, 10(7): Q07005.
|
[46] |
Albright R, Mason B, Langdon C. Effect of aragonite saturation state on settlement and post-settlement growth of Porites astreoides larvae[J]. Coral Reefs, 2008, 27(3): 485−490. doi: 10.1007/s00338-008-0392-5
|
[47] |
Vermeij M J A, Sandin S A. Density-dependent settlement and mortality structure the earliest life phases of a coral population[J]. Ecology, 2008, 89(7): 1994−2004. doi: 10.1890/07-1296.1
|
[48] |
Hughes T P, Jackson J B C. Population dynamics and life histories of foliaceous corals[J]. Ecological Monographs, 1985, 55(2): 141−166. doi: 10.2307/1942555
|
[49] |
Yuan Xiangcheng, Yuan Tao, Huang Hui, et al. Elevated CO2 delays the early development of scleractinian coral Acropora gemmifera[J]. Scientific Reports, 2018, 8(1): 2787. doi: 10.1038/s41598-018-21267-3
|
[50] |
Moya A, Huisman L, Ball E E, et al. Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification[J]. Molecular Ecology, 2012, 21(10): 2440−2454. doi: 10.1111/j.1365-294X.2012.05554.x
|