Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Xu Congjun,Liu Yang,Cheng Yuan, et al. Structure and complexity of Haizhou Bay food web based on topological network analysis[J]. Haiyang Xuebao,2020, 42(4):47–54,doi:10.3969/j.issn.0253−4193.2020.04.006
Citation: Xu Congjun,Liu Yang,Cheng Yuan, et al. Structure and complexity of Haizhou Bay food web based on topological network analysis[J]. Haiyang Xuebao,2020, 42(4):47–54,doi:10.3969/j.issn.0253−4193.2020.04.006

Structure and complexity of Haizhou Bay food web based on topological network analysis

doi: 10.3969/j.issn.0253-4193.2020.04.006
  • Received Date: 2019-06-18
  • Rev Recd Date: 2019-09-19
  • Available Online: 2020-11-18
  • Publish Date: 2020-04-25
  • Research on the structure and complexity of food webs helps to analyze the function, nutrient dynamics and energy conversion of food webs. Based on the survey data of fishery resources and the analysis of gastric contents in five voyages in Haizhou Bay and its adjacent waters from March to December 2011, this study constructed a Haizhou Bay topology network based on 11 topological network indices. To study the structure and complexity of the Haizhou Bay food network. The results showed that the number of species in the Haizhou Bay food network (S) was 93, the number of connections (L) was 1 021, the number of interactions per species (L/S) was 10.98, the number of connections (L/S2) was 0.12; the proportions of top species, intermediate species, foundation species were 29%, 69% and 2%, respectively; the omnivorous index of food web was 87%; the connection complexity index SC was 22.2; the characteristic path length ChPath was 2.11, and the clustering coefficient CC was 0.23. Studies on the number of interactions and the number of connections in each species showed that the values of L/S and L/S2 were within the normal range, so the complexity of the Haizhou Bay food web remained high. Through the analysis of the structure of the food web by species ratio, omnivorous index, connection complexity index, characteristic path length and clustering coefficient, it was found that the food network structure of Haizhou Bay was in a stable state, and the proportion of basic species was low because the phytoplankton and seaweed groups were not classified. Through the study of the structure and complexity of Haizhou Bay food network, it provides an important basis for the in-depth study of the function of Haizhou Bay food network and the scientific management of Haizhou Bay fishery resources.
  • loading
  • [1]
    张硕, 王腾, 符小明, 等. 连云港海州湾渔业生态修复水域生态系统能量流动模型初探[J]. 海洋环境科学, 2015, 34(1): 42−47.

    Zhang Shuo, Wang Teng, Fu Xiaoming, et al. A primary study on the energy flow in the ecosystem of fishery ecological restoration area in Haizhou Bay, Lianyungang[J]. Marine Environmental Science, 2015, 34(1): 42−47.
    [2]
    金显仕, 窦硕增, 单秀娟, 等. 我国近海渔业资源可持续产出基础研究的热点问题[J]. 渔业科学进展, 2015, 36(1): 124−131. doi: 10.11758/yykxjz.20150119

    Jin Xianshi, Dou Shuozeng, Shan Xiujuan, et al. Hot spots of frontiers in the research of sustainable yield of Chinese inshore fishery[J]. Progress in Fishery Sciences, 2015, 36(1): 124−131. doi: 10.11758/yykxjz.20150119
    [3]
    金艳, 刘勇, 袁兴伟, 等. 复杂网络理论在食物网中的应用和研究进展[J]. 海洋渔业, 2018, 40(2): 249−256. doi: 10.3969/j.issn.1004-2490.2018.02.015

    Jin Yan, Liu Yong, Yuan Xingwei, et al. Review: applications of complex network to food web[J]. Marine Fisheries, 2018, 40(2): 249−256. doi: 10.3969/j.issn.1004-2490.2018.02.015
    [4]
    林群, 王俊, 袁伟, 等. 捕捞和环境变化对渤海生态系统的影响[J]. 中国水产科学, 2016, 23(3): 619−629.

    Lin Qun, Wang Jun, Yuan Wei, et al. Effects of fishing and environmental change on the ecosystem of the Bohai Sea[J]. Journal of Fishery Sciences of China, 2016, 23(3): 619−629.
    [5]
    杨涛, 单秀娟, 金显仕, 等. 莱州湾春季鱼类群落关键种的长期变化[J]. 渔业科学进展, 2018, 39(1): 1−11.

    Yang Tao, Shan Xiujuan, Jin Xianshi, et al. Long-term changes in keystone species in fish community in spring in Laizhou Bay[J]. Progress in Fishery Sciences, 2018, 39(1): 1−11.
    [6]
    Allesina S, Alonso D, Pascual M. A general model for food web structure[J]. Science, 2008, 320(5876): 658−661. doi: 10.1126/science.1156269
    [7]
    邓景耀, 姜卫民, 杨纪明, 等. 渤海主要生物种间关系及食物网的研究[J]. 中国水产科学, 1997, 4(4): 1−7. doi: 10.3321/j.issn:1005-8737.1997.04.001

    Deng Jingyao, Jiang Weimin, Yang Jiming, et al. Species interaction and food web of major predatory species in the Bohai Sea[J]. Journal of Fishery Sciences of China, 1997, 4(4): 1−7. doi: 10.3321/j.issn:1005-8737.1997.04.001
    [8]
    王腾, 张贺, 张虎, 等. 基于营养通道模型的海州湾中国明对虾生态容纳量[J]. 中国水产科学, 2016, 23(4): 965−975.

    Wang Teng, Zhang He, Zhang Hu, et al. Ecological carrying capacity of Chinese shrimp stock enhancement in Haizhou Bay of East China based on Ecopath model[J]. Journal of Fishery Sciences of China, 2016, 23(4): 965−975.
    [9]
    郑晓春, 戴小杰, 朱江峰, 等. 太平洋中东部海域大眼金枪鱼胃含物分析[J]. 南方水产科学, 2015, 11(1): 75−80. doi: 10.3969/j.issn.2095-0780.2015.01.011

    Zheng Xiaochun, Dai Xiaojie, Zhu Jiangfeng, et al. Analysis on stomach content of Bigeye tuna (Thunnus obesus) in the eastern-central Pacific Ocean[J]. South China Fisheries Science, 2015, 11(1): 75−80. doi: 10.3969/j.issn.2095-0780.2015.01.011
    [10]
    王荣夫, 张崇良, 徐宾铎, 等. 海州湾秋季小眼绿鳍鱼的摄食策略及食物选择性[J]. 中国水产科学, 2018, 25(5): 1059−1070. doi: 10.3724/SP.J.1118.2018.17350

    Wang Rongfu, Zhang Chongliang, Xu Binduo, et al. Feeding strategy and prey selectivity of Chelidonichthys spinosus during autumn in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2018, 25(5): 1059−1070. doi: 10.3724/SP.J.1118.2018.17350
    [11]
    程济生, 朱金声. 黄海主要经济无脊椎动物摄食特征及其营养层次的研究[J]. 海洋学报, 1997, 19(6): 102−108.

    Cheng Jisheng, Zhu Jinsheng. A study on the characteristics and trophic levels of the main economic invertebrates in the Yellow Sea[J]. Haiyang Xuebao, 1997, 19(6): 102−108.
    [12]
    杨纪明. 渤海鱼类的食性和营养级研究[J]. 现代渔业信息, 2001, 16(10): 10−19.

    Yang Jiming. A study on food and trophic levels of Bohai Sea fish[J]. Modern Fisheries Information, 2001, 16(10): 10−19.
    [13]
    唐富江, 刘伟, 王继隆, 等. 兴凯湖大银鱼食物组成与食性转化[J]. 动物学研究, 2013, 34(5): 493−498.

    Tang Fujiang, Liu Wei, Wang Jilong, et al. Diet composition and transition of clearhead icefish (Protosalanx hyalocranius) in Lake Xingkai[J]. Zoological Research, 2013, 34(5): 493−498.
    [14]
    窦硕增, 杨纪明, 陈大刚. 渤海石鲽、星鲽、高眼鲽及焦氏舌鳎的食性[J]. 水产学报, 1992, 16(2): 162−166.

    Dou Shuozeng, Yang Jiming, Chen Dagang. Food habits of stone flounder, spotted flounder, high-eyed flounder and red tongue sole in the Bohai Sea[J]. Journal of Fisheries of China, 1992, 16(2): 162−166.
    [15]
    张波. 东、黄海带鱼的摄食习性及随发育的变化[J]. 海洋水产研究, 2004, 25(2): 6−12.

    Zhang Bo. Feeding habits and ontogenetic diet shift of hairtail fish (Trichiurus lepturus) in East China Sea and Yellow Sea[J]. Marine Fisheries Research, 2004, 25(2): 6−12.
    [16]
    徐开达, 金海卫, 卢占晖, 等. 东海区短鳄齿鱼摄食生态的初步研究[J]. 海洋科学, 2012, 36(7): 79−88.

    Xu Kaida, Jin Haiwei, Lu Zhanhui, et al. Preliminary study on feeding ecology of Champsodon snyderi in East China Sea region[J]. Marine Sciences, 2012, 36(7): 79−88.
    [17]
    杨纪明, 谭雪静. 渤海3种头足类食性分析[J]. 海洋科学, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017

    Yang Jiming, Tan Xuejing. Food analysis of three cephalopod species in the Bohai Sea[J]. Marine Sciences, 2000, 24(4): 53−55. doi: 10.3969/j.issn.1000-3096.2000.04.017
    [18]
    杨纪明. 渤海涟虫类和软体动物幼虫食性的观察[J]. 海洋科学, 1998, 22(6): 36−38.

    Yang Jiming. Observations on food of cumaceans and post larvae of mollusks in the Bohai Sea[J]. Marine Sciences, 1998, 22(6): 36−38.
    [19]
    杨德渐, 孙世春. 海洋无脊椎动物学[M]. 青岛: 中国海洋大学出版社, 1999: 294-308.

    Yang Dejian, Sun Shichun. Marine Invertebrate Zoology[M]. Qingdao: China Ocean University Press, 1999: 294−308.
    [20]
    邓景耀, 赵传颍. 海洋渔业生物学[M]. 北京: 中国农业出版社, 1991: 630.

    Deng Jingyao, Zhao Chuanying. Marine Fisheries Biology[M]. Beijing: China Agriculture Press, 1991: 630.
    [21]
    王凯, 章守宇, 汪振华, 等. 枸杞岛海藻场褐菖鲉的摄食习性[J]. 水产学报, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465

    Wang Kai, Zhang Shouyu, Wang Zhenhua, et al. Feeding habit of Sebastisous marmoratus in seaweed bed around Gouqi Island[J]. Journal of Fisheries of China, 2010, 34(2): 227−235. doi: 10.3724/SP.J.1231.2010.06465
    [22]
    杨纪明. 渤海无脊椎动物的食性和营养级研究[J]. 现代渔业信息, 2001, 16(9): 8−16.

    Yang Jiming. A study on food and trophic levels of Bohai Sea invertebrates[J]. Modern Fisheries Information, 2001, 16(9): 8−16.
    [23]
    赵文. 水生生物学[M]. 北京: 中国农业出版社, 2005: 405-422.

    Zhao Wen. Aquatic Biology[M]. Beijing: China Agriculture Press, 2005: 405-422.
    [24]
    蒋日进, 徐汉祥, 金海卫, 等. 东海蓝圆鲹的摄食习性[J]. 水产学报, 2012, 36(2): 216−227.

    Jiang Rijin, Xu Hanxiang, Jin Haiwei, et al. Feeding habits of blue mackerel scad Decapterus maruadsi Temminck et Schlegel in the East China Sea[J]. Journal of Fisheries of China, 2012, 36(2): 216−227.
    [25]
    韩东燕, 薛莹, 纪毓鹏, 等. 胶州湾5种虾虎鱼类的营养和空间生态位[J]. 中国水产科学, 2012, 36(2): 216−227.

    Han Dongyan, Xue Ying, Ji Yupeng, et al. Trophic and spatial niche of five gobiid fishes in Jiaozhou Bay[J]. Journal of Fishery Sciences of China, 2012, 36(2): 216−227.
    [26]
    戴萍. 台湾海峡鲐鱼食性的初步研究[J]. 海洋湖沼通报, 1989(2): 50−55.

    Dai Ping. Preliminary study on the food of Pneumatophorus japonicus in Taiwan Channel[J]. Transactions of Oceanology and Limnology, 1989(2): 50−55.
    [27]
    陈飞. 繸鳚(Azuma emmnion)生物学特性的研究[D]. 大连: 大连海洋大学, 2017.

    Chen Fei. Study on the biological characteristics of Azuma emmnion[D]. Dalian: Dalian Ocean University, 2017.
    [28]
    Marina T I, Salinas V, Cordone G, et al. The food web of Potter Cove (Antarctica): complexity, structure and function[J]. Estuarine, Coastal and Shelf Science, 2018, 200: 141−151. doi: 10.1016/j.ecss.2017.10.015
    [29]
    Briand F. Structural singularities of freshwater food webs[J]. Verh. Internat. Verein. Limnol., 1985, 22: 3356−3364.
    [30]
    Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[J]. Nature, 1998, 393(6684): 440−442. doi: 10.1038/30918
    [31]
    Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002, 74(1): 47−97. doi: 10.1103/RevModPhys.74.47
    [32]
    Montoya J M, Solé R V. Small world patterns in food webs[J]. Journal of Theoretical Biology, 2002, 214(3): 405−12. doi: 10.1006/jtbi.2001.2460
    [33]
    Montoya J M, Solé R V. Topological properties of food webs: from real data to community assembly models[J]. Oikos, 2003, 102(3): 614−622. doi: 10.1034/j.1600-0706.2003.12031.x
    [34]
    Opitz S. Trophic Interactions in Caribbean Coral Reefs[M]. Makati: International Center for Living Aquatic Resources, 1996.
    [35]
    De Santana C N, Rozenfeld A F, Marquet P A, et al. Topological properties of polar food webs[J]. Marine Ecology Progress Series, 2013, 474: 15−26. doi: 10.3354/meps10073
    [36]
    Bodini A, Bellingeri M, Allesina S, et al. Using food web dominator trees to catch secondary extinctions in action[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1524): 1725−1731. doi: 10.1098/rstb.2008.0278
    [37]
    Yodzis P. Local trophodynamics and the interaction of marine mammals and fisheries in the Benguela ecosystem[J]. Journal of Animal Ecology, 1998, 67(4): 635−658. doi: 10.1046/j.1365-2656.1998.00224.x
    [38]
    Link J. Does food web theory work for marine ecosystems?[J]. Marine Ecology Progress, 2002, 230: 1−9. doi: 10.3354/meps230001
    [39]
    Polis G A. Complex trophic interactions in deserts: an empirical critique of food-web theory[J]. The American Naturalist, 1991, 138(1): 123−155. doi: 10.1086/285208
    [40]
    Closs G P, Lake P S. Spatial and temporal variation in the structure of an intermittent-stream food web[J]. Ecological Monographs, 1994, 64(1): 1−21. doi: 10.2307/2937053
    [41]
    Martinez N D. Artifacts or attributes? Effects of resolution on the little rock lake food web[J]. Ecological Monographs, 1991, 61(4): 367−392. doi: 10.2307/2937047
    [42]
    Dunne J A, Williams R J, Martinez N D. Food-web structure and network theory: the role of connectance and size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12917−12922. doi: 10.1073/pnas.192407699
    [43]
    Martinez N D, Hawkins B A, Dawah H A, et al. Effects of sampling effort on characterization of food-web structure[J]. Ecology, 1999, 80(3): 1044−1055. doi: 10.1890/0012-9658(1999)080[1044:EOSEOC]2.0.CO;2
    [44]
    Johnson S, Domínguez-García V, Donetti L, et al. Trophic coherence determines food-web stability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17923−17928. doi: 10.1073/pnas.1409077111
    [45]
    Norkko A, Thrush S F, Cummings V J, et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply[J]. Ecology, 2007, 88(11): 2810−2820. doi: 10.1890/06-1396.1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(3)

    Article views (353) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return