Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Volume 42 Issue 4
Nov.  2020
Turn off MathJax
Article Contents
Li Hongjuan,Chen Gang,Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia ( Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao,2020, 42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002
Citation: Li Hongjuan,Chen Gang,Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia ( Rachycentron canadum ) to environmental hypoxia stress[J]. Haiyang Xuebao,2020, 42(4):12–19,doi:10.3969/j.issn.0253−4193.2020.04.002

Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress

doi: 10.3969/j.issn.0253-4193.2020.04.002
  • Received Date: 2019-06-28
  • Rev Recd Date: 2019-10-17
  • Available Online: 2020-11-18
  • Publish Date: 2020-04-25
  • This study investigated the oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress, and provided reference for the healthy cultivation of cobia. Through the hypoxia stress-reoxygenation test, the oxidative stress and energy utilization indexes of liver and muscle tissues were measured after hypoxia ((2.64±0.25)mg/L) stress for 3 h and reoxygenation ((6.34±0.15)mg/L) stress for 8 h, 24 h and 48 h. The results showed that after hypoxia stress, the activity of malondialdehyde (MDA), catalase (CAT) and glutathione reductase (GR) in the liver were significantly lower than that in the control group (p<0.05), and the activity of lactate dehydrogenase (LDH) was significantly higher than that in the control group (p<0.05). MDA and lipid peroxidase (LPO) activities in muscle were significantly lower than those in control group (p<0.05), and superoxide dismutase (SOD) and LDH activities were significantly higher than those in control group (p<0.05). The contents of muscle glycogen and liver glycogen were significantly lower than those of control group (p<0.01). During reoxygenation, the contents of MDA, LPO, SOD, CAT, glutathione peroxidase (GPx) and GR in liver and muscle all increased differentially. Liver glycogen content was significantly higher than that of the control group 24 h after reoxygenation (p<0.05), and significantly lower than that of the control group 48 h after reoxygenation (p<0.05). Muscle glycogen content was significantly lower than that of control group after reoxygenation for 8 h, 24 h and 48 h (p<0.05). In conclusion, hypoxia stress can cause some oxidative damage to the body of cobia, and the enzyme activity and energy supply of liver and muscle tissues change. The reoxygenation environment after hypoxia stress causes more severe oxidative damage to the body, which can be gradually restored to the normal level through physiological regulation.
  • loading
  • [1]
    张国松. 瓦氏黄颡鱼(Pelteobagrus vachelli)应对低氧胁迫的分子机制研究[D]. 南京: 南京师范大学, 2017.

    Zhang Guosong. Study on the molecular mechanism of Pelteobagrus vachelli in response to hypoxia stress[D]. Nanjing : Nanjing Normal University, 2017.
    [2]
    Wu R S S. Hypoxia: from molecular responses to ecosystem responses[J]. Marine Pollution Bulletin, 2002, 45(1−12): 35−45.
    [3]
    Buentello J A, Gatlin Ⅲ D M, Neill W H. Effects of water temperature and dissolved oxygen on daily feed consumption, feed utilization and growth of channel catfish (Ictalurus punctatus)[J]. Aquaculture, 2000, 182(3/4): 339−352.
    [4]
    李洁. 限制溶解氧供应对褐牙鲆幼鱼生长的影响及其机制的实验研究[D]. 青岛: 中国海洋大学, 2011.

    Li Jie. Effects of restricted the supply of dissolved oxygen on the growth of juvenile brown flounder, (Paralichthys olivaceus) and the mechanism[D]. Qingdao: Ocean University of China, 2011.
    [5]
    Lai Kengpo, Li J W, Tse A C K, et al. Hypoxia alters steroidogenesis in female marine medaka through miRNAs regulation[J]. Aquatic Toxicology, 2016, 172: 1−8. doi: 10.1016/j.aquatox.2015.12.012
    [6]
    穆景利, 靳非, 赵化德, 等. 水体低氧的早期暴露对青鳉(Oryzias latipes)后期的生长、性别比和繁殖能力的影响[J]. 生态毒理学报, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002

    Mu Jingli, Jin Fei, Zhao Huade, et al. Early-life exposure to hypoxia altered growth, sex ratio, and reproduction in medaka (Oryzias latipes)[J]. Asian Journal of Ecotoxicology, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002
    [7]
    Diaz R J. Overview of hypoxia around the world[J]. Journal of Environmental Quality, 2001, 30(2): 275−281. doi: 10.2134/jeq2001.302275x
    [8]
    Dybas C L. Dead zones spreading in world oceans[J]. BioScience, 2005, 55(7): 552−557. doi: 10.1641/0006-3568(2005)055[0552:DZSIWO]2.0.CO;2
    [9]
    常志成, 温海深, 张美昭, 等. 溶解氧水平对花鲈幼鱼氧化应激与能量利用的影响及生理机制[J]. 中国海洋大学学报, 2018, 48(7): 20−28.

    Chang Zhicheng, Wen Haishen, Zhang Meizhao, et al. Effects of dissolved oxygen levels on oxidative stress response and energy utilization of juvenile Chinese sea bass (Lateolabrax maculatus) and associate physiological mechanisms[J]. Periodical of Ocean University of China, 2018, 48(7): 20−28.
    [10]
    王永红, 张建设, 曾霖. β-葡聚糖对低氧胁迫下大黄鱼幼鱼的保护作用及其机理[J]. 水产学报, 2018, 42(6): 828−837.

    Wang Yonghong, Zhang Jianshe, Zeng Lin. β-glucan decreases intensity of hypoxia-induced oxidative stress in large yellow croaker (Larimichthys crocea) and its corresponding mechanisms[J]. Journal of Fisheries of China, 2018, 42(6): 828−837.
    [11]
    张晓梅, 王春琳, 李来国, 等. 耗氧率及溶氧胁迫对长蛸体内酶活力的影响[J]. 水生态学杂志, 2010, 3(2): 72−79.

    Zhang Xiaomei, Wang Chunlin, Li Laiguo, et al. Oxygen consumption rate and effect of hypoxia stress on enzyme activity of Octopus variabilis[J]. Journal of Hydroecology, 2010, 3(2): 72−79.
    [12]
    陈刚, 张健东, 吴灶和. 军曹鱼幼鱼耗氧率与窒息点的研究[J]. 水产养殖, 2005, 26(1): 1−4. doi: 10.3969/j.issn.1004-2091.2005.01.001

    Chen Gang, Zhang Jiandong, Wu Zaohe. Study on the oxygen consumption rate and the asphyxianted point of Rachycentron canadum[J]. Journal of Aquaculture, 2005, 26(1): 1−4. doi: 10.3969/j.issn.1004-2091.2005.01.001
    [13]
    陈强, 刘泓宇, 谭北平, 等. 饲料胆固醇对军曹鱼幼鱼生长、血液生化指标及脂代谢的影响[J]. 广东海洋大学学报, 2016, 36(1): 35−43. doi: 10.3969/j.issn.1673-9159.2016.01.007

    Chen Qiang, Liu Hongyu, Tan Beiping, et al. Effects of dietary cholesterol level on growth performance, blood biochemical parameters and lipid metabolism of juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2016, 36(1): 35−43. doi: 10.3969/j.issn.1673-9159.2016.01.007
    [14]
    熊向英, 黄国强, 彭银辉, 等. 低氧胁迫对鲻幼鱼生长、能量代谢和氧化应激的影响[J]. 水产学报, 2016, 40(1): 73−82.

    Xiong Xiangying, Huang Guoqiang, Peng Yinhui, et al. Effect of hypoxia on growth performance, energy metabolism and oxidative stress of Mugil cephalus[J]. Journal of Fisheries of China, 2016, 40(1): 73−82.
    [15]
    王健伟. 低氧对鳊鱼幼鱼临界游泳和匀加速游泳能力的影响及其生化机制[D]. 重庆: 重庆师范大学, 2015.

    Wang Jianwei. The effects of hypoxia on critical swimming and constant accelerate swimming performance and biochemical mechanism in juvenile Parabramis pekinensis[D]. Chongqing: Chongqing Normal University, 2015.
    [16]
    黄建盛, 陆枝, 陈刚, 等. 急性低氧胁迫对军曹鱼大规格幼鱼血液生化指标的影响[J]. 海洋学报, 2019, 41(6): 76−84.

    Huang Jiansheng, Lu Zhi, Chen Gang, et al. Acute hypoxia stress on blood biochemical indexes of large-sized juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2019, 41(6): 76−84.
    [17]
    Lushchak V I. Environmentally induced oxidative stress in aquatic animals[J]. Aquatic Toxicology, 2011, 101(1): 13−30. doi: 10.1016/j.aquatox.2010.10.006
    [18]
    Victor V M, Esplugues J V, Hernandez-Mijares A, et al. Oxidative stress and mitochondrial dysfunction in sepsis: a potential therapy with mitochondria-targeted antioxidants[J]. Infectious Disorders - Drug Targets, 2009, 9(4): 376−389. doi: 10.2174/187152609788922519
    [19]
    Ortuño J, Esteban M A, Meseguer J. Lack of effect of combining different stressors on innate immune responses of seabream (Sparus aurata L.)[J]. Veterinary Immunology and Immunopathology, 2002, 84(1/2): 17−27.
    [20]
    Lushchak V I, Bagnyukova T V, Lushchak O V, et al. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues[J]. The International Journal of Biochemistry & Cell Biology, 2005, 37(6): 1319−1330.
    [21]
    Sampaio F G, de Lima Boijink C, Oba E T, et al. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2008, 147(1): 43−51.
    [22]
    Lushchak V I, Bagnyukova T V. Hypoxia induces oxidative stress in tissues of a goby, the rotan Perccottus glenii[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2007, 148(4): 390−397. doi: 10.1016/j.cbpb.2007.07.007
    [23]
    张志伟. 鲢低氧应激相关基因的克隆与表达分析[D]. 武汉: 华中农业大学, 2011.

    Zhang Zhiwei. Molecular cloning and differential expression patterns of hypoxic stress related genes in silver carp[D]. Wuhan: Huazhong Agricultural University, 2011.
    [24]
    何伟, 曹振东, 付世建. 温度和低氧对白鲢乳酸与糖水平的影响[J]. 重庆师范大学学报:自然科学版, 2013, 30(5): 27−31.

    He Wei, Cao Zhendong, Fu Shijian. Effects of temperature and hypoxia on lactate and carbohydrate level in silver carp (Hypophthalmichthys molitrix)[J]. Journal of Chongqing Normal University: Natural Science, 2013, 30(5): 27−31.
    [25]
    揭小华, 彭雄, 黄波, 等. 乳酸脱氢酶编码基因在肿瘤中表达及其转录调控机制的研究进展[J]. 肿瘤, 2015, 35(11): 1271−1277.

    Jie Xiaohua, Peng Xiong, Huang Bo, et al. Progress in research on expression and transcriptional regulation of lactate dehydrogenase coding genes in cancer[J]. Tumor, 2015, 35(11): 1271−1277.
    [26]
    Vagner M, Lefrançois C, Ferrari R S, et al. The effect of acute hypoxia on swimming stamina at optimal swimming speed in flathead grey mullet Mugil cephalus[J]. Marine Biology, 2008, 155(2): 183−190. doi: 10.1007/s00227-008-1016-x
    [27]
    区又君, 陈世喜, 王鹏飞, 等. 低氧环境下卵形鲳鲹的氧化应激响应与生理代谢相关指标的研究[J]. 南方水产科学, 2017, 13(3): 120−124. doi: 10.3969/j.issn.2095-0780.2017.03.016

    Ou Youjun, Chen Shixi, Wang Pengfei, et al. Study on oxidative stress response and physiological metabolism related indices of Trachinotus ovatus under hypoxia stress[J]. South China Fisheries Science, 2017, 13(3): 120−124. doi: 10.3969/j.issn.2095-0780.2017.03.016
    [28]
    Chew S F, Ip Y K. Biochemical adaptations of the mudskipper Boleophthalmus boddaerti to a lack of oxygen[J]. Marine Biology, 1992, 112(4): 567−571. doi: 10.1007/BF00346174
    [29]
    彭银辉, 黄国强, 李洁, 等. 溶氧水平对梭鱼幼鱼能量代谢与氧化应激的影响[J]. 广西科学, 2013, 20(4): 294−298.

    Peng Yinhui, Huang Guoqiang, Li Jie, et al. Energy metabolism and oxidative stress of juvenile Liza haematocheila as dissolved oxygen decline[J]. Guangxi Sciences, 2013, 20(4): 294−298.
    [30]
    Sharpe R L, Milligan C L. Lactate efflux from sarcolemmal vesicles isolated from rainbow trout Oncorhynchus mykiss white muscle is via simple diffusion[J]. Journal of Experimental Biology, 2003, 206(3): 543−549. doi: 10.1242/jeb.00126
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(2)

    Article views (248) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return