Citation: | Shi Suixiang,Wang lei,Yu Xuan, et al. Application of long term and short term memory neural network in prediction of chlorophyll a concentration[J]. Haiyang Xuebao,2020, 42(2):134–142,doi:10.3969/j.issn.0253−4193.2020.02.014 |
[1] |
史锐, 张红, 岳荣, 等. 基于小波理论的干旱区内陆湖泊叶绿素a的TM影像遥感反演[J]. 生态学报, 2017, 37(3): 1043−1053.
Shi Rui, Zhang Hong, Yue Rong, et al. A wavelet theory based remote sensing inversion of chlorophyll a concentrations for inland lakes in arid areas using TM image data[J]. Acta Ecologica Sinica, 2017, 37(3): 1043−1053.
|
[2] |
罗建美, 霍永伟, 韩晓庆. 基于HJ卫星的近岸Ⅱ类水体叶绿素a浓度定量遥感反演研究——以滦河口北部海域为例[J]. 海洋学报, 2017, 39(4): 117−129.
Luo Jianmei, Huo Yongwei, Han Xiaoqing. Inversion of chlorophyll a concentration in offshore Ⅱ. waters using HJ satellite data--Example in the north of the Luanhe Delta[J]. Haiyang Xuebao, 2017, 39(4): 117−129.
|
[3] |
盛琳, 陈静, 刘锐, 等. 一种水质分析方法: 基于GOCI影像的东平湖叶绿素a浓度估算[J]. 环境保护, 2017, 45(10): 60−63.
Sheng Lin, Chen Jing, Liu Rui, et al. A method of water quality analysis: chlorophyll a concentration estimation of Dongping Lake based on GOCI image[J]. Environmental Protection, 2017, 45(10): 60−63.
|
[4] |
Vollenweider R A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication[R]. Paris, France: OECD, 1968.
|
[5] |
Jørgensen S E, Mejer H, Friis M. Examination of a lake model[J]. Ecological Modelling, 1978, 4(2/3): 253−278.
|
[6] |
毛江美, 陈新军, 余景. 基于神经网络的南太平洋长鳍金枪鱼渔场预报[J]. 海洋学报, 2016, 38(10): 34−43.
Mao Jiangmei, Chen Xinjun, Yu Jing. Forecasting fishing ground of Thunnus alalunga based on BP neural network in the South Pacific Ocean[J]. Haiyang Xuebao, 2016, 38(10): 34−43.
|
[7] |
赵玉芹, 汪西莉, 蒋赛. 渭河水质遥感反演的人工神经网络模型研究[J]. 遥感技术与应用, 2009, 24(1): 63−67. doi: 10.11873/j.issn.1004-0323.2009.1.63
Zhao Yuqin, Wang Xili, Jiang Sai. Study on neural network model for Weihe River water quality retrieving using remote-sensing image[J]. Remote Sensing Technology and Application, 2009, 24(1): 63−67. doi: 10.11873/j.issn.1004-0323.2009.1.63
|
[8] |
卢志娟, 朱玲, 裴洪平, 等. 基于小波分析与BP神经网络的西湖叶绿素a浓度预测模型[J]. 生态学报, 2008, 28(10): 4965−4973. doi: 10.3321/j.issn:1000-0933.2008.10.042
Lu Zhijuan, Zhu Ling, Pei Hongping, et al. The model of chlorophyll a concentration forecast in the West Lake based on wavelet analysis and BP neural networks[J]. Acta Ecologica Sinica, 2008, 28(10): 4965−4973. doi: 10.3321/j.issn:1000-0933.2008.10.042
|
[9] |
周露洪, 谷孝鸿, 曾庆飞, 等. 利用BP神经网络短期预测太湖不同湖区叶绿素a浓度[J]. 水生态学杂志, 2012, 33(4): 1−6.
Zhou Luhong, Gu Xiaohong, Zeng Qingfei, et al. Applications of back propagation neural network for short-term prediction of chlorophyll a concentration in different regions of Lake Taihu[J]. Journal of Hydroecology, 2012, 33(4): 1−6.
|
[10] |
杨柳, 韩瑜, 汪祖茂, 等. 基于BP神经网络的温榆河水质参数反演模型研究[J]. 水资源与水工程学报, 2013, 24(6): 25−28. doi: 10.11705/j.issn.1672-643X.2013.06.006
Yang Liu, Han Yu, Wang Zumao, et al. Study on retrieval model of water quality parameter in Wenyu River based on BP neural network[J]. Journal of Water Resources and Water Engineering, 2013, 24(6): 25−28. doi: 10.11705/j.issn.1672-643X.2013.06.006
|
[11] |
仝玉华, 周洪亮, 黄浙丰, 等. 一种自优化RBF神经网络的叶绿素a浓度时序预测模型[J]. 生态学报, 2011, 31(22): 6788−6795.
Tong Yuhua, Zhou Hongliang, Huang Zhefeng, et al. Time series prediction of the concentration of chlorophyll a based on RBF neural network with parameters self-optimizing[J]. Acta Ecologica Sinica, 2011, 31(22): 6788−6795.
|
[12] |
Dekker A G, Brando V E, Anstee J M, et al. Imaging Spectrometry of Water[M]//van der Meer F D, de Jong S M. Imaging Spectrometry: Basic Principles and Prospective Applications. Dordrecht: Springer, 2002: 307-359.
|
[13] |
柴永强, 邵峰晶, 孙仁诚, 等. 基于决策树的MODIS影像赤潮智能检测技术[J]. 青岛大学学报:自然科学版, 2012, 25(2): 47−52.
Chai Yongqiang, Shao Fengjing, Sun Rencheng, et al. The intelligent detection technology of redtide from modis imagery based on decision tree[J]. Journal of Qingdao University: Natural Science Edition, 2012, 25(2): 47−52.
|
[14] |
李修竹, 苏荣国, 张传松, 等. 基于支持向量机的长江口及其邻近海域叶绿素a浓度预测模型[J]. 中国海洋大学学报, 2019, 49(1): 69−76.
Li Xiuzhu, Su Rongguo, Zhang Chuansong, et al. A Chl a prediction model based on support vector machine in Yangtze River estuaries and its Adjacent sea areas[J]. Periodical of Ocean University of China, 2019, 49(1): 69−76.
|
[15] |
钟令枢. 基于ARIMA-LSTM的架空线状态数据挖掘[D]. 广州: 华南理工大学, 2016.
Zhong Lingshu. Overhead line status data mining based on ARIMA-LSTM[D]. Guangzhou: South China University of Technology, 2016.
|
[16] |
Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[C]//Proceedings of the 9th International Conference on Artificial Neural Networks. Edinburgh, UK: IET, 1999.
|
[17] |
Graves A. Supervised Sequence Labelling with Recurrent Neural Networks[M]. Heidelberg: Springer, 2012.
|
[18] |
Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015.
|
[19] |
Yang Yuting, Dong Junyu, Sun Xin, et al. A CFCC-LSTM model for sea surface temperature prediction[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(2): 207−211. doi: 10.1109/LGRS.2017.2780843
|
[20] |
Greff K, Srivastava R K, Koutnik J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2222−2232. doi: 10.1109/TNNLS.2016.2582924
|
[21] |
Ma Xuezhe, Hovy E. End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF[M]. Stroudsburg: Association for Computational Linguistics, 2016.
|
[22] |
Ordóñez J F, Roggen D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition[J]. Sensors, 2016, 16(1): 115. doi: 10.3390/s16010115
|
[23] |
Gers F A, Eck D, Schmidhuber J. Applying LSTM to time series predictable through time-window approaches[C]//Proceedings of the International Conference on Artificial Neural Networks. Vienna, Austria: Springer, 2001: 669−676.
|