Citation: | Xie Xingwei,Yuan Huamao,Song Jinming, et al. Response of redox sensitive elements to changes of sedimentary environment in core sediments of seasonal low-oxygen zone in East China Sea[J]. Haiyang Xuebao,2020, 42(2):30–43,doi:10.3969/j.issn.0253−4193.2020.02.004 |
[1] |
赵晨英. 乳山湾近海与黄渤海溶解氧、有机碳、氮和磷的循环与收支的关键过程研究[D]. 青岛: 国家海洋局第一海洋研究所, 2017.
Zhao Chenying. Controlling processes of dissolved oxygen, organic carbon, nitrogen and phosphorus cycles and budgets in the coastal area of Rushan Bay and Bohai and Yellow Seas[D]. Qingdao: First Institute of Oceanography, SOA, 2017.
|
[2] |
韦钦胜, 王守强, 臧家业, 等. 海洋低氧现象的研究及相关问题初探[J]. 海洋开发与管理, 2009, 26(6): 54−59. doi: 10.3969/j.issn.1005-9857.2009.06.012
Wei Qinsheng, Wang Shouqiang, Zang Jiaye, et al. Research on marine hypoxia phenomenon and some related issues[J]. Ocean Development and Management, 2009, 26(6): 54−59. doi: 10.3969/j.issn.1005-9857.2009.06.012
|
[3] |
Stramma L, Johnson G C, Sprintall J, et al. Expanding oxygen-minimum zones in the tropical oceans[J]. Science, 2008, 320(5876): 655−658. doi: 10.1126/science.1153847
|
[4] |
Wong G T F, Gong G C, Liu K K, et al. “Excess nitrate” in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 1998, 46(3): 411−418. doi: 10.1006/ecss.1997.0287
|
[5] |
Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River[J]. Continental Shelf Research, 2008, 28(12): 1483−1489. doi: 10.1016/j.csr.2007.02.009
|
[6] |
刘军, 臧家业, 冉祥滨, 等. 长江口低氧区沉积物中磷的形态及其环境意义[J]. 环境科学, 2017, 38(8): 3243−3253.
Liu Jun, Zang Jiaye, Ran Xiangbin, et al. Sedimentary phosphorus speciation in the coastal hypoxic area of Changjiang Estuary and its environmental significance[J]. Environmental Science, 2017, 38(8): 3243−3253.
|
[7] |
刘志国, 徐韧, 刘材材, 等. 长江口外低氧区特征及其影响研究[J]. 海洋通报, 2012, 31(5): 588−593.
Liu Zhiguo, Xu Ren, Liu Caicai, et al. Characters of hypoxia area off the Yangtze River Estuary and its influence[J]. Marine Science Bulletin, 2012, 31(5): 588−593.
|
[8] |
李道季, 张经, 黄大吉, 等. 长江口外氧的亏损[J]. 中国科学: D辑, 2002, 32(8): 686−694. doi: 10.3321/j.issn:1006-9267.2002.08.009
Li Daoji, Zhang Jing, Huang Daji, et al. Oxygen depletion off the Changjiang (Yangtze River) estuary[J]. Science in China : Series D, 2002, 32(8): 686−694. doi: 10.3321/j.issn:1006-9267.2002.08.009
|
[9] |
张哲, 张志锋, 韩庚辰, 等. 长江口外低氧区时空变化特征及形成、变化机制初步探究[J]. 海洋环境科学, 2012, 31(4): 469−473. doi: 10.3969/j.issn.1007-6336.2012.04.002
Zhang Zhe, Zhang Zhifeng, Han Gengchen, et al. Spatio-temporal variation, formation and transformation of the hypoxia area off the Yangtze River estuary[J]. Marine Environmental Science, 2012, 31(4): 469−473. doi: 10.3969/j.issn.1007-6336.2012.04.002
|
[10] |
宋国栋. 东海溶解氧气候态分布及海洋学应用研究[D]. 青岛: 中国海洋大学, 2008.
Song Guodong. Climatological parameters distributions of dissolved oxygen in the East China Sea and its application in the oceanography[D]. Qingdao: Ocean University of China, 2008.
|
[11] |
Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition[J]. Earth and Planetary Science Letters, 1996, 145(1/4): 65−78.
|
[12] |
于宇, 宋金明, 李学刚, 等. 沉积物微量金属元素在重建水体环境变化中的意义[J]. 地质论评, 2012, 58(5): 911−922. doi: 10.3969/j.issn.0371-5736.2012.05.013
Yu Yu, Song Jinming, Li Xuegang, et al. Significance of sedimentary trace metals in reconstructing the aquatic environmental Changes[J]. Geological Review, 2012, 58(5): 911−922. doi: 10.3969/j.issn.0371-5736.2012.05.013
|
[13] |
宋金明, 李学刚. 海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能[J]. 海洋学报, 2018, 40(10): 1−13.
Song Jinming, Li Xuegang. Ecological functions and biogenic element cycling roles of marine sediment/particles[J]. Haiyang Xuebao, 2018, 40(10): 1−13.
|
[14] |
Algeo T J, Tribovillard N. Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation[J]. Chemical Geology, 2009, 268(3/4): 211−225.
|
[15] |
Acharya S S, Panigrahi M K, Gupta A K, et al. Response of trace metal redox proxies in continental shelf environment: the Eastern Arabian Sea scenario[J]. Continental Shelf Research, 2015, 106: 70−84. doi: 10.1016/j.csr.2015.07.008
|
[16] |
Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of upper pennsylvanian kansas-type cyclothems[J]. Chemical Geology, 2004, 206(3/4): 289−318.
|
[17] |
Colodner D, Edmond J, Boyle E. Rhenium in the Black Sea: comparison with molybdenum and uranium[J]. Earth and Planetary Science Letters, 1995, 131(1/2): 1−15.
|
[18] |
许淑梅. 长江口外缺氧区及其邻近海域氧化还原敏感性元素的分布规律及环境指示意义[D]. 青岛: 中国海洋大学, 2005.
Xu Shumei. The distribution and environmental significance of redox sensitive elements in the hypoxia zone of the Changjiang Estuary and its Contiguous area[D]. Qingdao: Ocean University of China, 2008.
|
[19] |
许淑梅, 翟世奎, 张爱滨, 等. 长江口及其邻近海域表层沉积物中氧化还原敏感性微量元素的环境指示意义[J]. 沉积学报, 2007, 25(5): 759−766. doi: 10.3969/j.issn.1000-0550.2007.05.015
Xu Shumei, Zhai Shikui, Zhang Aibin, et al. Distribution and environment significance of redox sensitive trace elements of the Changjiang estuary hypoxia zone and its contiguous sea area[J]. Acta Sedimentologica Sinica, 2007, 25(5): 759−766. doi: 10.3969/j.issn.1000-0550.2007.05.015
|
[20] |
冯旭文. 长江口百年来底层水体季节性缺氧在沉积物中的记录[D]. 杭州: 浙江大学, 2009.
Feng Xuwen. Sedimentary records of hypoxia in the Changjiang Estuary over last 100 years[D]. Hangzhou: Zhejiang University, 2009.
|
[21] |
冯旭文, 金翔龙, 章伟艳, 等. 长江口外缺氧区柱样沉积物元素的分布及其百年沉积环境效应[J]. 海洋地质与第四纪地质, 2009, 29(2): 25−32.
Feng Xuwen, Jin Xianglong, Zhang Weiyan, et al. Variation of elements in sediments from the hypoxia zone of the Yangtze estuary and its response to sedimentary environment over the last 100 years[J]. Marine Geology & Quaternary Geology, 2009, 29(2): 25−32.
|
[22] |
郭伟. 东海赤潮区水体缺氧状况的沉积记录分析[D]. 青岛: 中国科学院海洋研究所, 2013.
Guo Wei. Sedimentary records of hypoxia status in the red-tide zone of the East Sea[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2013.
|
[23] |
Chi Lianbao, Song Xiuxian, Yuan Yongquan, et al. Distribution and key influential factors of dissolved oxygen off the Changjiang river estuary (CRE) and its adjacent waters in China[J]. Marine Pollution Bulletin, 2017, 125(1/2): 440−450.
|
[24] |
黄思静. 用Excel计算沉积物粒度分布参数[J]. 成都理工学院学报, 1999, 26(2): 195−198.
Huang Sijing. Calculation of grain size distribution parameters of sediments by microsoft Excel[J]. Journal of Chengdu University of Technology, 1999, 26(2): 195−198.
|
[25] |
Piper D Z, Calvert S E. A marine biogeochemical perspective on black shale deposition[J]. Earth-Science Reviews, 2009, 95(1/2): 63−96.
|
[26] |
Abrahim G M S, Parker R J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand[J]. Environmental Monitoring and Assessment, 2008, 136(1/3): 227−238.
|
[27] |
Shepard F P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Petrology, 1954, 24(3): 151−158.
|
[28] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
|
[29] |
Turgeon S, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy[J]. Chemical Geology, 2006, 234(3/4): 321−339.
|
[30] |
Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments[J]. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1735−1750.
|
[31] |
Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record[J]. Marine Geology, 1993, 113(1/2): 67−88.
|
[32] |
Jones B, Manning D A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones[J]. Chemical Geology, 1994, 111(1/4): 111−129.
|
[33] |
Hallberg R O. A geochemical method for investigation of paleoredox conditions in sediments[J]. Ambio Special Report, 1976(4): 139−147.
|
[34] |
汤冬杰, 史晓颖, 赵相宽, 等. Mo-U共变作为古沉积环境氧化还原条件分析的重要指标——进展、问题与展望[J]. 现代地质, 2015, 29(1): 1−13. doi: 10.3969/j.issn.1000-8527.2015.01.001
Tang Dongjie, Shi Xiaoying, Zhao Xiangkuan, et al. Mo-U covariation as an important proxy for sedimentary environment redox conditions—progress, problems and Prospects[J]. Geoscience, 2015, 29(1): 1−13. doi: 10.3969/j.issn.1000-8527.2015.01.001
|
[35] |
Shaheen S M, Ali R A, Abowaly M E, et al. Assessing the mobilization of As, Cr, Mo, and Se in Egyptian lacustrine and calcareous soils using sequential extraction and biogeochemical microcosm techniques[J]. Journal of Geochemical Exploration, 2018, 191: 28−42. doi: 10.1016/j.gexplo.2018.05.003
|
[36] |
McLennan S M. Relationships between the trace element composition of sedimentary rocks and upper continental crust[J]. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 2000GC000109.
|
[37] |
Berner R A, Raiswell R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory[J]. Geochimica et Cosmochimica Acta, 1983, 47(5): 855−862. doi: 10.1016/0016-7037(83)90151-5
|
[38] |
张岩松, 章飞军, 郭学武, 等. 东海秋季典型站位沉降颗粒物通量[J]. 海洋与湖沼, 2006, 37(1): 28−34. doi: 10.3321/j.issn:0029-814X.2006.01.005
Zhang Yansong, Zhang Feijun, Guo Xuewu, et al. Autumn flux of particle settling observed at three representative stations in East China Sea[J]. Oceanologia et Limnologia Sinica, 2006, 37(1): 28−34. doi: 10.3321/j.issn:0029-814X.2006.01.005
|