Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Han Yanling,Zhao Yao,Zhou Ruyan, et al. Cooperative active learning and semi-supervised method for sea ice image classification[J]. Haiyang Xuebao,2020, 42(1):123–135,doi:10.3969/j.issn.0253−4193.2020.01.013
Citation: Han Yanling,Zhao Yao,Zhou Ruyan, et al. Cooperative active learning and semi-supervised method for sea ice image classification[J]. Haiyang Xuebao,2020, 42(1):123–135,doi:10.3969/j.issn.0253−4193.2020.01.013

Cooperative active learning and semi-supervised method for sea ice image classification

doi: 10.3969/j.issn.0253-4193.2020.01.013
  • Received Date: 2018-12-17
  • Rev Recd Date: 2019-05-10
  • Available Online: 2021-04-21
  • Publish Date: 2020-01-25
  • In the classification of sea ice remote sensing spectral images, labeled samples are obtained difficultly, which leads to difficulty improving the accuracy of sea ice classification. But a large number of unlabeled samples containing abundant information are not fully utilized. In view of this situation, a method combining active learning and semi-supervised learning is proposed to study the classification of sea ice remote sensing spectral images. The active learning part combines BVSB, SOM neural networks and ECBD algorithm to select representative samples containing uncertainty and diversity for training. The semi-supervised learning part integrates the idea of active learning use TSVM to select relatively reliable samples containing information from a large number of unlabeled samples for iterative training. Then, the results of classification and semi supervised classification are used cooperatively to guarantee the correctness of the pseudo-labeled samples through consistency verification. To verify the effectiveness of the method, Hyperion hyperspectral data with a resolution of 30 m in Baffin Bay area (the verification data is Landsat-8 data with a resolution of 15 m) and Landsat-8 data with a resolution of 15 m in Liaodong Bay (the verification data is Google Earth data with a resolution of 4.77 m) area are used for experiments of sea ice classification. The experimental results show that the cooperative classification method can make full use of the information contained in a large number of unlabeled samples in the case of a small number of label samples, and achieve rapid convergence higher classification accuracy (the overall accuracy is 90.003% and 93.288%, respectively), which verifies that the method is suitable for classification of sea ice remote sensing.
  • loading
  • [1]
    张晰, 张杰, 孟俊敏, 等. 基于极化散射特征的极化合成孔径雷达海冰分类方法研究: 以渤海海冰分类为例[J]. 海洋学报, 2013, 35(5): 95−101.

    Zhang Xi, Zhang Jie, Meng Junmin, et al. Polarimetric scattering characteristics based sea ice types classification by polarimetric synthetic aperture radar: taking sea ice in the Bohai Sea for example[J]. Haiyang Xuebao, 2013, 35(5): 95−101.
    [2]
    Liu Rujie, Wang Yuehong, Baba T, et al. SVM-based active feedback in image retrieval using clustering and unlabeled data[J]. Pattern Recognition, 2008, 41(8): 2645−2655. doi: 10.1016/j.patcog.2008.01.023
    [3]
    Joshi A J, Porikli F, Papanikolopoulos N. Multi-class active learning for image classification[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL, USA: IEEE, 2009: 2372−2379.
    [4]
    Demir B, Persello C, Bruzzone L. Batch-mode active-learning methods for the interactive classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 1014−1031. doi: 10.1109/TGRS.2010.2072929
    [5]
    陈荣, 曹永锋, 孙洪. 基于主动学习和半监督学习的多类图像分类[J]. 自动化学报, 2011, 37(8): 954−962.

    Chen Rong, Cao Yongfeng, Sun Hong. Multi-class image classification with active learning and semi-supervised learning[J]. Acta Automatica Sinica, 2011, 37(8): 954−962.
    [6]
    Patra S, Bruzzone L. A fast cluster-assumption based active-learning technique for classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1617−1626. doi: 10.1109/TGRS.2010.2083673
    [7]
    Patra S, Bruzzone L. A novel SOM-SVM-Based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6899−6910. doi: 10.1109/TGRS.2014.2305516
    [8]
    Vapnik V, Sterin A. On structural risk minimization or overall risk in a problem of pattern recognition[J]. Automation and Remote Control, 1977, 10(3): 1495−1503.
    [9]
    Zhou Zhihua, Li Ming. Semi-supervised learning by disagreement[J]. Knowledge and Information Systems, 2010, 24(3): 415−439. doi: 10.1007/s10115-009-0209-z
    [10]
    Bruzzone L, Chi Mingmin, Marconcini M. A novel transductive SVM for semisupervised classification of remote-sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3363−3373. doi: 10.1109/TGRS.2006.877950
    [11]
    Leng Yan, Xu Xinyan, Qi Guanghui. Combining active learning and semi-supervised learning to construct SVM classifier[J]. Knowledge-Based Systems, 2013, 44: 121−131. doi: 10.1016/j.knosys.2013.01.032
    [12]
    Wan Lunjun, Tang Ke, Li Mingzhi, et al. Collaborative active and semisupervised learning for hyperspectral remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2384−2396. doi: 10.1109/TGRS.2014.2359933
    [13]
    Han Yanling, Ren Jing, Hong Zhonghua, et al. Active learning algorithms for the classification of hyperspectral sea ice images[J]. Mathematical Problems in Engineering, 2015, 2015: 124601.
    [14]
    Joachims T. Transductive inference for text classification using support vector machines[C]//Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999: 200−209.
    [15]
    Persello C, Bruzzone L. Active and semisupervised learning for the classification of remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11): 6937−6956. doi: 10.1109/TGRS.2014.2305805
    [16]
    Barry P, Segal C, Carman S. EO-1/Hyperion science data user’s guide[R]. CAGE No. 11982, Redondo Beach: TRW, 2001.
    [17]
    苏红军, 杜培军, 盛业华. 高光谱影像波段选择算法研究[J]. 计算机应用研究, 2008, 25(4): 1093−1096. doi: 10.3969/j.issn.1001-3695.2008.04.039

    Su Hongjun, Du Peijun, Sheng Yehua. Study on band selection algorithms of hyperspectral image data[J]. Application Research of Computers, 2008, 25(4): 1093−1096. doi: 10.3969/j.issn.1001-3695.2008.04.039
    [18]
    Du Qian, Yang He. Similarity-based unsupervised band selection for hyperspectral image analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 564−568. doi: 10.1109/LGRS.2008.2000619
    [19]
    Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27.
    [20]
    Han Yanling, Li Peng, Zhang Yun, et al. Combining active learning and transductive support vector machines for sea ice detection[J]. Journal of Applied Remote Sensing, 2018, 12(2): 026016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article views (638) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return