Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Liu Sen,Zou Bin,Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao,2020, 42(1):113–122,doi:10.3969/j.issn.0253−4193.2020.01.012
Citation: Liu Sen,Zou Bin,Shi Lijian, et al. Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data[J]. Haiyang Xuebao,2020, 42(1):113–122,doi:10.3969/j.issn.0253−4193.2020.01.012

Polar sea ice concentration retrieval based on FY-3C microwave radiation imager data

doi: 10.3969/j.issn.0253-4193.2020.01.012
  • Received Date: 2018-11-29
  • Rev Recd Date: 2019-02-21
  • Available Online: 2021-04-21
  • Publish Date: 2020-01-25
  • Polar sea ice affects atmospheric and ocean circulation and it plays an important role in global climate change. The sea ice concentration is one of the important parameters to characterize the temporal and spatial variation of sea ice. The retrieval algorithm of sea ice concentration based on brightness temperature data of FY-3C microwave radiation imager in the polar region was studied. After the time-space matching and linear regression, FY-3C microwave radiometers brightness temperature data was corrected. The atmospheric effects were reduced using two weather filters and sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. The sea ice concentration product was validated by calculating Arctic and Antarctic sea ice extent and area in 2016−2017. The sea ice extent and area trends of this two years were basically consistent with the NSIDC product, with an average difference of 3%. This research laid the foundation for the release of the polar sea ice concentration business products of China's autonomous satellites, and the products guarantee the continuity of crucial polar sea ice record that might soon be interrupted.
  • loading
  • [1]
    Cheung H H N, Keenlyside N, Omrani N E, et al. Remarkable link between projected uncertainties of Arctic sea-ice decline and winter Eurasian climate[J]. Advances in Atmospheric Sciences, 2018, 35(1): 38−51. doi: 10.1007/s00376-017-7156-5
    [2]
    柯长青, 彭海涛, 孙波, 等. 2002−2011年北极海冰时空变化分析[J]. 遥感学报, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044

    Ke Changqing, Peng Haitao, Sun Bo, et al. Spatio-temporal variability of Arctic sea ice from 2002 to 2011[J]. Journal of Remote Sensing, 2013, 17(2): 452−466. doi: 10.11834/jrs.20132044
    [3]
    Curry J A, Schramm J L, Ebert E E. Sea ice-albedo climate feedback mechanism[J]. Journal of Climate, 1995, 8(2): 240−247. doi: 10.1175/1520-0442(1995)008<0240:SIACFM>2.0.CO;2
    [4]
    冯士筰, 李凤歧, 李少菁. 海洋科学导论[M]. 北京: 高等教育出版社, 1999.

    Feng Shizuo, Li Fengqi, Li Shaojing. An Introduction to Marine Science[M]. Beijing: Higher Education Press, 1999.
    [5]
    刘艳霞, 王泽民, 刘婷婷. 1979−2014年南北极海冰变化特征分析[J]. 遥感信息, 2016, 31(2): 24−29. doi: 10.3969/j.issn.1000-3177.2016.02.005

    Liu Yanxia, Wang Zemin, Liu Tingting. Change analysis for Antarctic and Arctic sea ice concentration and extent[J]. Remote Sensing Information, 2016, 31(2): 24−29. doi: 10.3969/j.issn.1000-3177.2016.02.005
    [6]
    Comiso J C. Increasing positive trend in the Antarctic sea ice extent and associated surface temperature changes[C]//AGU Fall Meeting. AGU Fall Meeting Abstracts, 2015.
    [7]
    李新情, 程晓, 惠凤鸣, 等. 2014年夏季北极东北航道冰情分析[J]. 极地研究, 2016, 28(1): 87−94.

    Li Xinqing, Cheng Xiao, Hui Fengming, et al. Analysis of sea ice conditions in the Arctic northeast passage in summer 2014[J]. Chinese Journal of Polar Research, 2016, 28(1): 87−94.
    [8]
    马丽娟, 陆龙骅, 卞林根. 南极海冰北界涛动指数及其与我国夏季天气气候的关系[J]. 应用气象学报, 2007, 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019

    Ma Lijuan, Lu Longhua, Bian Lingen. Antarctic sea-ice extent oscillation index with the relationship between ASEOI and synoptic climate in summer of China[J]. Journal of Applied Meteorological Science, 2007, 18(4): 568−572. doi: 10.3969/j.issn.1001-7313.2007.04.019
    [9]
    Parkinson C L. Arctic Sea Ice, 1973−1976: Satellite Passive -Microwave Observations[M]. Washington, DC: Scientific and Technical Information Branch, NASA, 1987.
    [10]
    Witze A. Ageing satellites put crucial sea-ice climate record at risk[J]. Nature, 2017, 551(7678): 13−14. doi: 10.1038/nature.2017.22907
    [11]
    国家卫星气象中心. 微波成像仪(MWRI)[EB/OL]. [2018−03−23]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DeviceIntro_FY3_MWRI.aspx

    National Satellite Meteorological Center. Microwave Radiation Imager(MWRI)[EB/OL].[2018−03−23]. http://satellite.nsmc.org.cn/PortalSite/StaticContent/DeviceIntro_FY3_MWRI.aspx
    [12]
    Remote Sensing Systems[EB/OL].[2018−04−10]. http://www.remss.com/measurements/brightness-temperature
    [13]
    Hilburn K A, Wentz F J. Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA)[J]. Journal of Applied Meteorology and Climatology, 2008, 47(3): 778−794. doi: 10.1175/2007JAMC1635.1
    [14]
    Cavalieri D J, Parkinson C L, Gloersen P, et al. Sea Ice Concentrations from nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1[EB/OL]. [2018−01−29]. https://nsidc.org/data/NSIDC-0051/versions/1
    [15]
    黄端, 邱玉宝, 石利娟, 等. 两种星载微波辐射计被动亮温数据的交叉定标[J]. 测绘科学, 2017, 42(1): 136−142.

    Huang Duan, Qiu Yubao, Shi Lijuan, et al. Cross-calibration for passive microwave measurement of MERI and AMSR-E[J]. Science of Surveying and Mapping, 2017, 42(1): 136−142.
    [16]
    Cavalieri D J, Crawford J P, Drinkwater M R, et al. Aircraft active and passive microwave validation of sea ice concentration from the defense meteorological satellite program special sensor microwave imager[J]. Journal of Geophysical Research: Oceans, 1991, 96(C12): 21989−22008. doi: 10.1029/91JC02335
    [17]
    Cavalieri D J, Parkinson C L, Digirolamo N, et al. Intersensor calibration between F13 SSMI and F17 SSMIS for global sea ice data records[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 233−236. doi: 10.1109/LGRS.2011.2166754
    [18]
    Cavalieri D J, St. Germain K M, Swift C T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I[J]. Journal of Glaciology, 1995, 41(139): 455−464. doi: 10.1017/S0022143000034791
    [19]
    Cavalieri D J, Parkinson C L, Gloersen P, et al. Arctic and Antarctic sea ice concentrations from multichannel passive-microwave satellite data sets: October 1978 to September 1995 User's guide[R]. Washington D.C.: NASA Technical Memorandum, 1997.
    [20]
    Remote Sensing Systems[EB/OL].[2018−11−19]. http://images.remss.com/amsr/amsr2_data_daily.html#top
    [21]
    Ivanova N, Pedersen L T, Tonboe R T, et al. Inter-comparison and evaluation of sea ice algorithms: towards further identification of challenges and optimal approach using passive microwave observations[J]. The Cryosphere, 2015, 9(5): 1797−1817. doi: 10.5194/tc-9-1797-2015
    [22]
    Kern S, Rösel A, Pedersen L T, et al. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations[J]. The Cryosphere, 2016, 10(5): 2217−2239. doi: 10.5194/tc-10-2217-2016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article views (381) PDF downloads(95) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return