Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Zhao Wei,Wang Jingjing,Xu Song, et al. Distribution characteristics and influencing factors of bacterioplankton community with offshore distance variation in the surface seawater of Bohai Bay[J]. Haiyang Xuebao,2019, 41(12):156–171,doi:10.3969/j.issn.0253−4193.2019.12.015
Citation: Zhao Wei,Wang Jingjing,Xu Song, et al. Distribution characteristics and influencing factors of bacterioplankton community with offshore distance variation in the surface seawater of Bohai Bay[J]. Haiyang Xuebao,2019, 41(12):156–171,doi:10.3969/j.issn.0253−4193.2019.12.015

Distribution characteristics and influencing factors of bacterioplankton community with offshore distance variation in the surface seawater of Bohai Bay

doi: 10.3969/j.issn.0253-4193.2019.12.015
  • Received Date: 2018-12-12
  • Rev Recd Date: 2019-06-21
  • Available Online: 2021-04-21
  • Publish Date: 2019-12-25
  • In order to study the impact of coastal pollution in Bohai Bay on the microecology of sea areas with different distances from the shore, the bacterioplankton community compositions (BCCs) in surface seawater samples from 6 stations with different offshore distances along the coastal region of Bohai Bay were analyzed through high throughput sequencing technology, and the main factors affecting the variation of BCCs were explored by combining environmental and spatial factors in this region. The results showed that there was gradient change of environmental factor in the studied region, such as the contents of nitrogen nutrients were higher in the nearshore station than those in the offshore station. Although there was no significant difference tested for the alpha diversity among different sites, the diversity indexes were still relatively higher in the nearshore stations. The bacterioplankton community compositions were significantly varied with the change of offshore distances. Members of Gammaproteobacteria and Bacteroidetes were mainly enriched in nearshore stations which were closely related with the contents of nitrogen nutrients, members of Cyanobacteria were mainly enriched in offshore stations, which were closely related to ammonia nitrogen, transparency and conductivity. The variance partitioning analysis showed that PCNM variables purely contributed most (38.1%) to the variation of community structure, indicating that there may be environmental variables with spatial structure within the research scope that had not yet been measured may affect the spatial distribution of the bacterioplankton community. Meanwhile, the results of functional prediction indicated that the eutrophication, hydrocarbon pollution and other environmental conditions in the nearshore station may contribute to the change of BCCs. This study explored the variation of offshore-distance-varied BCC in the coastal region of Bohai Bay from environmental and spatial impact, which may provide reference for the study and protection of marine environment in Bohai Bay.
  • loading
  • [1]
    聂红涛, 陶建华. 渤海湾海岸带开发对近海水环境影响分析[J]. 海洋工程, 2008, 26(3): 44−50. doi: 10.3969/j.issn.1005-9865.2008.03.008

    Nie Hongtao, Tao Jianhua. Impact of coastal exploitation on the eco-environment of Bohai Bay[J]. The Ocean Engineering, 2008, 26(3): 44−50. doi: 10.3969/j.issn.1005-9865.2008.03.008
    [2]
    Fuhrman J A. Microbial community structure and its functional implications[J]. Nature, 2009, 459(7244): 193−199. doi: 10.1038/nature08058
    [3]
    Chapin Ⅲ F S, Sala O E, Burke I C, et al. Ecosystem consequences of changing biodiversity: experimental evidence and a research agenda for the future[J]. BioScience, 1998, 48(1): 45−52. doi: 10.2307/1313227
    [4]
    肖慧, 唐学玺, 乔旭东, 等. 渤海湾天津近岸表层沉积物中细菌丰度及其与环境因子的相关性研究[J]. 中国海洋大学学报:自然科学版, 2010, 40(6): 87−90, 160.

    Xiao Hui, Tang Xuexi, Qiao Xudong, et al. The abundance of benthic bacteria in Tianjin nearshore waters in the Bohai Bay and its correlation with environmental factors[J]. Periodical of Ocean University of China, 2010, 40(6): 87−90, 160.
    [5]
    李清雪, 赵海萍, 陶建华. 渤海湾海域浮游细菌的生态研究[J]. 海洋技术学报, 2005, 24(4): 50−53, 56.

    Li Qingxue, Zhao Haiping, Tao Jianhua. Ecological research of heterotrophic bacterioplankton in the Bohai Bay waters[J]. Ocean Technology, 2005, 24(4): 50−53, 56.
    [6]
    Daniel B, François G, Pierre L. 数量生态学—R语言的应用[M]. 赖江山, 译. 北京: 高等教育出版社, 2014.

    Daniel B, François G, Pierre L. Nunerical Ecology with R[M]. Lai Jiangshan, trans. Beijing: High Education Press, 2014.
    [7]
    Willis K J, Whittaker R J. Species diversity-scale matters[J]. Science, 2002, 295(5558): 1245−1248. doi: 10.1126/science.1067335
    [8]
    Ricklefs R E. A comprehensive framework for global patterns in biodiversity[J]. Ecology Letters, 2010, 7(1): 1−15.
    [9]
    Rajaniemi T K, Goldberg D E, Turkington R, et al. Quantitative partitioning of regional and local processes shaping regional diversity patterns[J]. Ecology Letters, 2006, 9(2): 121−128. doi: 10.1111/j.1461-0248.2005.00855.x
    [10]
    Qian Hong, White P S, Song J S. Effects of regional vs. ecological factors on plant species richness: an intercontinental analysis[J]. Ecology, 2007, 88(6): 1440−1453. doi: 10.1890/06-0916
    [11]
    Xiong Jinbo, Ye Xiansen, Wang Kai, et al. Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea[J]. Applied and Environmental Microbiology, 2014, 80(6): 1919−1925. doi: 10.1128/AEM.03731-13
    [12]
    Wang Kai, Ye Xiansen, Chen Heping, et al. Bacterial biogeography in the coastal waters of northern Zhejiang, East China Sea is highly controlled by spatially structured environmental gradients[J]. Environmental Microbiology, 2015, 17(10): 3898−3913. doi: 10.1111/1462-2920.12884
    [13]
    Zhang Yao, Zhao Zihao, Dai Minhan, et al. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea[J]. Molecular Ecology, 2014, 23(9): 2260−2274. doi: 10.1111/mec.12739
    [14]
    赵海萍, 李清雪, 陶建华. 渤海湾浮游细菌分布特征及环境影响因素[J]. 水资源保护, 2018, 34(5): 88−94. doi: 10.3880/j.issn.1004-6933.2018.05.14

    Zhao Haiping, Li Qingxue, Tao Jianhua. Distribution characteristics of bacterioplankton in Bohai Bay and its environmental influence factors[J]. Water Resources Protection, 2018, 34(5): 88−94. doi: 10.3880/j.issn.1004-6933.2018.05.14
    [15]
    刘鹏远, 陈庆彩, 胡晓珂. 渤海湾湾口表层沉积物中的核心细菌群落结构及其对环境因子的响应[J]. 微生物学通报, 2018, 45(9): 1940−1955.

    Liu Pengyuan, Chen Qingcai, Hu Xiaoke. Structure characteristics of core bacterial communities in surface sediments and analysis on their responses to environmental factors in the inlet of Bohai Bay[J]. Microbiology China, 2018, 45(9): 1940−1955.
    [16]
    Caporaso J G, Lauber C L, Walters W A, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(S1): 4516−4522.
    [17]
    Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957−2963. doi: 10.1093/bioinformatics/btr507
    [18]
    Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335−336. doi: 10.1038/nmeth.f.303
    [19]
    Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194−2200. doi: 10.1093/bioinformatics/btr381
    [20]
    DeSantis T Z, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB[J]. Applied and Environmental Microbiology, 2006, 72(7): 5069−5072. doi: 10.1128/AEM.03006-05
    [21]
    Caporaso J G, Bittinger K, Bushman F D, et al. PyNAST: a flexible tool for aligning sequences to a template alignment[J]. Bioinformatics, 2010, 26(2): 266−267. doi: 10.1093/bioinformatics/btp636
    [22]
    Student. The elimination of spurious correlation due to position in time or space[J]. Biometrika, 1914, 10(1): 179−180.
    [23]
    Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices[J]. Ecological Modelling, 2002, 153(1/2): 51−68.
    [24]
    Segata N, Izard J, Waldron L, et al. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60. doi: 10.1186/gb-2011-12-6-r60
    [25]
    Louca S, Parfrey L W, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272−1277. doi: 10.1126/science.aaf4507
    [26]
    Pommier T, Canbäck B, Riemann L, et al. Global patterns of diversity and community structure in marine bacterioplankton[J]. Molecular Ecology, 2007, 16(4): 867−880.
    [27]
    Bernhard A E, Colbert D, McManus J, et al. Microbial community dynamics based on 16S rRNA gene profiles in a Pacific Northwest estuary and its tributaries[J]. FEMS Microbiology Ecology, 2005, 52(1): 115−128. doi: 10.1016/j.femsec.2004.10.016
    [28]
    Alonso-Sáez L, Gasol J M. Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in northwestern Mediterranean coastal waters[J]. Applied and Environmental Microbiology, 2007, 73(11): 3528−3535. doi: 10.1128/AEM.02627-06
    [29]
    Schattenhofer M, Fuchs B M, Amann R, et al. Latitudinal distribution of prokaryotic picoplankton populations in the Atlantic Ocean[J]. Environmental Microbiology, 2009, 11(8): 2078−2093. doi: 10.1111/j.1462-2920.2009.01929.x
    [30]
    Alonso C, Gómez-Pereira P, Ramette A, et al. Multilevel analysis of the bacterial diversity along the environmental gradient Río de la Plata–South Atlantic Ocean[J]. Aquatic Microbial Ecology, 2010, 60(1): 57−72.
    [31]
    Bouvier T C, del Giorgio P A. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries[J]. Limnology and Oceanography, 2002, 47(2): 453−470. doi: 10.4319/lo.2002.47.2.0453
    [32]
    Crump B C, Armbrust E V, Baross J A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the columbia river, its estuary, and the adjacent coastal ocean[J]. Applied and Environmental Microbiology, 1999, 65(7): 3192−3204.
    [33]
    Gómez-Pereira P R, Fuchs B M, Alonso C, et al. Distinct flavobacterial communities in contrasting water masses of the north Atlantic Ocean[J]. The ISME Journal, 2010, 4(4): 472−487. doi: 10.1038/ismej.2009.142
    [34]
    侯三玲, 曹海鹏, 李洋, 等. 噬菌弧菌H2的分离鉴定与噬菌活性分析[J]. 环境污染与防治, 2014, 36(1): 19−23, 27. doi: 10.3969/j.issn.1001-3865.2014.01.005

    Hou Sanling, Cao Haipeng, Li Yang, et al. Isolation, identification of Bacteriovorax sp. H2 and its lysis activity analysis[J]. Environmental Pollution and Control, 2014, 36(1): 19−23, 27. doi: 10.3969/j.issn.1001-3865.2014.01.005
    [35]
    马英, 焦念志. 聚球藻(Synechococcus)分子生态学研究进展[J]. 自然科学进展, 2004, 14(9): 967−972. doi: 10.3321/j.issn:1002-008X.2004.09.002

    Ma Ying, Jiao Nianzhi. Advances in molecular ecology of Synechococcus[J]. Progress in Natural Science, 2004, 14(9): 967−972. doi: 10.3321/j.issn:1002-008X.2004.09.002
    [36]
    王晨阳. 海洋聚球蓝细菌(Synechococcus)的纯化鉴定及生理和生态分布特征[D]. 北京: 中国科学院海洋研究所, 2006.

    Wang Chenyang. Physiological, phylogenetic and ecological characteristics of cultured isolates of marine Synechococcus genus[D]. Beijing: Institute of Oceanology, Chinese Academy of Sciences, 2006.
    [37]
    He Yaodong, Sen B, Zhou Shuangyan, et al. Distinct seasonal patterns of bacterioplankton abundance and dominance of phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao coastal waters off the Bohai Sea[J]. Frontiers in Microbiology, 2017, 8: 1579. doi: 10.3389/fmicb.2017.01579
    [38]
    韩哲一. 聚球藻(Synechococcus cf. elongatus)生长与海区再生氮的定量关系研究[D]. 厦门: 厦门大学, 2017.

    Han Zheyi. Research on quantitative relationship between the growth of Synechococcus cf. elongatus and nitrogen regeneration in the sea[D]. Xiamen: Xiamen University, 2017.
    [39]
    吴世凯, 谢平, 倪乐意, 等. 长江中下游地区湖泊中蓝藻及其与氮磷浓度的关系[J]. 水生态学杂志, 2014, 35(3): 19−25. doi: 10.3969/j.issn.1674-3075.2014.03.003

    Wu Shikai, Xie Ping, Ni Leyi, et al. Cyanobacteria genus and its relationship with nitrogen and phosphorus concentration in lakes along the middle and lower reaches of the Yangtze river[J]. Journal of Hydroecology, 2014, 35(3): 19−25. doi: 10.3969/j.issn.1674-3075.2014.03.003
    [40]
    Seo J H, Kang I, Yang S J, et al. Characterization of spatial distribution of the bacterial community in the South Sea of Korea[J]. PLoS One, 2017, 12(3): e0174159. doi: 10.1371/journal.pone.0174159
    [41]
    Paerl R W, Johnson K S, Welsh R M, et al. Differential distributions of Synechococcus subgroups across the california current system[J]. Frontiers in Microbiology, 2011, 2: 59.
    [42]
    刘晓辉. 长江口及邻近海域海水细菌多样性及时空分布规律研究[D]. 舟山: 浙江海洋大学, 2017.

    Liu Xiaohui. Temporal and spatial distribution of bacterial diversity in seawater of Changjiang Estuary and adjacent areas[D]. Zhoushan: Zhejiang Ocean University, 2017.
    [43]
    Richa K, Balestra C, Piredda R, et al. Distribution, community composition, and potential metabolic activity of bacterioplankton in an urbanized mediterranean sea coastal zone[J]. Applied and Environmental Microbiology, 2017, 83(17): e00494−17.
    [44]
    赵三军, 肖天, 李洪波, 等. 胶州湾聚球菌(Synechococcus spp.)蓝细菌的分布及其对初级生产力的贡献[J]. 海洋与湖沼, 2005, 36(6): 534−540. doi: 10.3321/j.issn:0029-814X.2005.06.007

    Zhao Sanjun, Xiao Tian, Li Hongbo, et al. Distribution of Synechococcus spp in Jiaozhou Bay[J]. Oceanologia et Limnologia Sinica, 2005, 36(6): 534−540. doi: 10.3321/j.issn:0029-814X.2005.06.007
    [45]
    Zhou Jizhong, He Zhili, Yang Yunfeng, et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats[J]. mBio, 2015, 6(1): e02288−14.
    [46]
    位光山. 黄河入海口沉积物和水体中微生物群落的比较研究[D]. 泰安: 山东农业大学, 2015.

    Wei Guangshan. Comparison of microbial communities between sediments and water columns from the yellow river estuary[D]. Tai’an: Shandong Agricultural University, 2015.
    [47]
    Vieira R P, Gonzalez A M, Cardoso A M, et al. Relationships between bacterial diversity and environmental variables in a tropical marine environment, Rio de Janeiro[J]. Environmental Microbiology, 2008, 10(1): 189−199.
    [48]
    Borcard D, Legendre P. Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari, Oribatei)[J]. Environmental and Ecological Statistics, 1994, 1(1): 37−61. doi: 10.1007/BF00714196
    [49]
    Dray S, Legendre P, Peres-Neto P R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM)[J]. Ecological Modelling, 2006, 196(3/4): 483−493.
    [50]
    Blanchet F G, Legendre P, Borcard D. Modelling directional spatial processes in ecological data[J]. Ecological Modelling, 2008, 215(4): 325−336. doi: 10.1016/j.ecolmodel.2008.04.001
    [51]
    Hedlund B P, Geiselbrecht A D, Bair T J, et al. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov[J]. Applied and Environmental Microbiology, 1999, 65(1): 251−259.
    [52]
    Meyer S T, Ebeling A, Eisenhauer N, et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity[J]. Ecosphere, 2016, 7(12): e016179.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views (443) PDF downloads(80) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return