Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Tian Xue,Cai Weicong,Su Jinjing, et al. Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection[J]. Haiyang Xuebao,2019, 41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010
Citation: Tian Xue,Cai Weicong,Su Jinjing, et al. Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection[J]. Haiyang Xuebao,2019, 41(12):103–112,doi:10.3969/j.issn.0253−4193.2019.12.010

Transcriptome analysis of marine microalga Emiliania huxleyi in response to virus infection

doi: 10.3969/j.issn.0253-4193.2019.12.010
  • Received Date: 2018-12-19
  • Rev Recd Date: 2019-05-30
  • Available Online: 2021-04-21
  • Publish Date: 2019-12-25
  • Emiliania huxleyi, the numerically dominant coccolithophore in the modern oceans and its specific lytic virus EhV exert a critical impact upon the oceanic carbon, sulfur cycle and global climate, thus serving as a key host-pathogen model system. Despite their impact on biogeochemical cycling, the transcriptional dynamics of these important oceanic events is still poorly understood. To understand the host-virus interaction in E. huxleyi-EhV system, the transcriptome of E. huxleyi BOF92 involved in virus infection was investigated by using Illumina HiSeq 2 000 high-throughput sequencing technology. Two cDNA libraries, generated 6 h and 45 h after viral infection (Exp) were compared with two libraries from the corresponding times uninfected cultures (Con). A total of 32 909 unigenes with an average length of 1 153 bp were generated. Totally 2 617 and 5 229 differentially expressed genes (DEGs) associated with viral infection were identified in 6 hpi and 45 hpi, respectively, among which 465 genes were the common DEGs in the two time points. Ten DEGs were random selected for quantitative RT-PCR (qRT-PCR) analysis, and the results confirmed that the transcriptome analysis was reliable. Furthermore, the DEGs were subject to GO and KEGG enrichment analysis. The results showed that most of the DEGs were involved in oxidation-reduction reactions, glutathione metabolism, lipid metabolism, carbohydrate metabolism and signal transduction. Some of the reactive oxygen species (ROS) scavenging genes were screened out, in which 9 genes were up-regulated and 11 genes were down-regulated. These results suggested that ROS signaling molecules might play a central role during host-virus interaction.
  • loading
  • [1]
    Pagarete A, Corguillé G L, Tiwari B, et al. Unveiling the transcriptional features associated with coccolithovirus infection of natural Emiliania huxleyi blooms[J]. FEMS Microbiology Ecology, 2011, 78(3): 555−564. doi: 10.1111/j.1574-6941.2011.01191.x
    [2]
    Feldmesser E, Rosenwasser S, Vardi A, et al. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi[J]. BMC Genomics, 2014, 15(1): 1−16. doi: 10.1186/1471-2164-15-1
    [3]
    Sheyn U, Rosenwasser S, Lehahn Y, et al. Expression profiling of host and virus during a coccolithophore bloom provides insights into the role of viral infection in promoting carbon export[J]. ISME Journal, 2018, 8(3): 704−713.
    [4]
    Jakob I, Weggenmann F, Posten C. Cultivation of Emiliania huxleyi for coccolith production[J]. Algal Research, 2018, 31: 47−59. doi: 10.1016/j.algal.2018.01.013
    [5]
    Tsuji Y, Yamazaki M, Suzuki I, et al. Quantitative analysis of carbon flow into photosynthetic products functioning as carbon storage in the marine Coccolithophore, Emiliania huxleyi[J]. Marine Biotechnology, 2015, 17(4): 428−440. doi: 10.1007/s10126-015-9632-1
    [6]
    Schatz D, Shemi A, Rosenwasser S, et al. Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms[J]. New Phytologist, 2015, 204(4): 854−863.
    [7]
    Brussaard C P. Viral control of phytoplankton populations-a review1[J]. Journal of Eukaryotic Microbiology, 2004, 51(2): 125−138. doi: 10.1111/j.1550-7408.2004.tb00537.x
    [8]
    Martínez J M, Schroeder D C, Wilson W H. Dynamics and genotypic composition of Emiliania huxleyi and their co-occurring viruses during a coccolithophore bloom in the North Sea[J]. FEMS Microbiology Ecology, 2012, 81(2): 315−323. doi: 10.1111/j.1574-6941.2012.01349.x
    [9]
    Schroeder D C, Oke J, Malin G, et al. Coccolithovirus (phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliania huxleyi[J]. Archives of Virology, 2002, 147(9): 1685−1698. doi: 10.1007/s00705-002-0841-3
    [10]
    Wilson W H, Schroeder D C, Allen M J, et al. Complete genome sequence and lytic phase transcription profile of a coccolithovirus[J]. Science, 2005, 309(5737): 1090−1092. doi: 10.1126/science.1113109
    [11]
    Malitsky S, Ziv C, Rosenwasser S, et al. Viral infection of the marine alga Emiliania huxleyi triggers lipidome remodeling and induces the production of highly saturated triacylglycerol[J]. New Phytologist, 2016, 210(1): 88−96. doi: 10.1111/nph.13852
    [12]
    Ruiz E, Oosterhof M, Sandaa R, et al. Emerging interaction patterns in the Emiliania huxleyi-EhV system[J]. Viruses, 2017, 9(3): 61−75. doi: 10.3390/v9030061
    [13]
    Rosenwasser S, Ziv C, Van Creveld S G, et al. Virocell metabolism: metabolic innovations during host-virus interactions in the ocean[J]. Trends in Microbiology, 2016, 24(10): 821−832. doi: 10.1016/j.tim.2016.06.006
    [14]
    Kegel J U, Blaxter M, Allen M J, et al. Transcriptional host-virus interaction of Emiliania huxleyi (haptophyceae) and EhV-86 deduced from combined analysis of expressed sequence tags and microarrays[J]. European Journal of Phycology, 2010, 45(1): 1−12. doi: 10.1080/09670260903349900
    [15]
    Kimmance S A, Allen M J, Pagarete A, et al. Reduction in photosystem Ⅱ efficiency during a virus-controlled Emiliania huxleyi bloom[J]. Marine Ecology Progress Series, 2014, 495: 65−76. doi: 10.3354/meps10527
    [16]
    Rosenwasser S, Mausz M A, Schatz D, et al. Rewiring host lipid metabolism by large viruses determines the fate of Emiliania huxleyi, a bloom-forming alga in the ocean[J]. Plant Cell, 2014, 26(6): 2689−2707. doi: 10.1105/tpc.114.125641
    [17]
    Pagarete A, Allen M J, Wilson W H, et al. Host–virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest[J]. Environ Microbiol, 2009, 11(11): 2840−2848. doi: 10.1111/j.1462-2920.2009.02006.x
    [18]
    Ziv C, Malitsky S, Othman A, et al. Viral serine palmitoyltransferase induces metabolic switch in sphingolipid biosynthesis and is required for infection of a marine alga [Microbiology][J]. Proceeding of the National Academy of Sciences, 2016, 113(13): E1907. doi: 10.1073/pnas.1523168113
    [19]
    Rose S L, Fulton J M, Brown C M, et al. Isolation and characterization of lipid rafts in Emiliania huxleyi: a role for membrane microdomains in host-virus interactions[J]. Environmental Microbiology, 2014, 16(4): 1150−1166. doi: 10.1111/1462-2920.12357
    [20]
    Sheyn U, Rosenwasser S, Ben-Dor S, et al. Modulation of host ROS metabolism is essential for viral infection of a bloom-forming coccolithophore in the ocean[J]. The ISME Journal, 2016, 10(7): 1742−1754. doi: 10.1038/ismej.2015.228
    [21]
    Vardi A, Haramaty L, Van Mooy B A S, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population[J]. Proceedings of the National Academy of Sciences, 2012, 109(47): 19327−19332. doi: 10.1073/pnas.1208895109
    [22]
    Bidle K D. Programmed cell death in unicellular phytoplankton[J]. Current Biology, 2016, 26(13): R594−R607. doi: 10.1016/j.cub.2016.05.056
    [23]
    Bidle K D. The molecular ecophysiology of programmed cell death in marine phytoplankton[J]. Annual Review of Marine Science, 2015, 7(7): 341.
    [24]
    Liu J W, Cai W C, Fang X, et al. Virus-induced apoptosis and phosphorylation form of metacaspase in the marine coccolithophorid Emiliania huxleyi[J]. Archives of Microbiology, 2018, 200(3): 413−422. doi: 10.1007/s00203-017-1460-4
    [25]
    Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25. doi: 10.1186/gb-2009-10-3-r25
    [26]
    Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
    [27]
    Demey C N, Li B. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1): 323−323. doi: 10.1186/1471-2105-12-323
    [28]
    张丽丽, 张富春. 短期盐胁迫下盐穗木的转录组分析[J]. 植物研究, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011

    Zhang Lili, Zhang Fuchun. Transcriptomic analysis of the Halostachys caspica in response to short-term salt stress[J]. Plant Research, 2018, 38(1): 91−99. doi: 10.7525/j.issn.1673-5102.2018.01.011
    [29]
    Bochenek M, Etherington G J, Koprivova A, et al. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi[J]. New Phytologist, 2013, 199(3): 650−662. doi: 10.1111/nph.12303
    [30]
    Read B A, Kegel J, Klute M J, et al. Pan genome of the phytoplankton Emiliania underpins its global distribution[J]. Nature, 2013, 499(7457): 209−213. doi: 10.1038/nature12221
    [31]
    Von Dassow P, John U, Ogata H, et al. Life-cycle modification in open oceans accounts for genome variability in a cosmopolitan phytoplankton[J]. ISME Journal, 2015, 9(6): 1365−1377. doi: 10.1038/ismej.2014.221
    [32]
    Dassow P V, Ogata H, Probert I, et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell[J]. Genome Biology, 2009, 10(10): R114. doi: 10.1186/gb-2009-10-10-r114
    [33]
    Fulton J M, Fredricks H F, Bidle K D, et al. Novel molecular determinants of viral susceptibility and resistance in the lipidome of Emiliania huxleyi[J]. Environmental Microbiology, 2014, 16(4): 1137−1149. doi: 10.1111/1462-2920.12358
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(5)

    Article views (361) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return