Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Wang Kun,Zhang Chongliang,Wang Jing, et al. Spatial heterogeneity of growth traits of four fish species in the Haizhou Bay[J]. Haiyang Xuebao,2019, 41(12):62–70,doi:10.3969/j.issn.0253−4193.2019.12.006
Citation: Wang Kun,Zhang Chongliang,Wang Jing, et al. Spatial heterogeneity of growth traits of four fish species in the Haizhou Bay[J]. Haiyang Xuebao,2019, 41(12):62–70,doi:10.3969/j.issn.0253−4193.2019.12.006

Spatial heterogeneity of growth traits of four fish species in the Haizhou Bay

doi: 10.3969/j.issn.0253-4193.2019.12.006
  • Received Date: 2018-12-26
  • Rev Recd Date: 2019-07-22
  • Available Online: 2021-04-21
  • Publish Date: 2019-12-25
  • Growth parameters of fish are commonly assumed homogeneous in traditional fish stock assessment. However, increasing studies in recent years have shown that the growth of marine fish is characterized by spatial heterogeneity. To evaluate the spatial heterogeneity of growth traits of the fishes in the Haizhou Bay and its adjacent waters, this study analyzed the spatial distribution of 4 fish species and estimated their von Bertalanffy growth function parameters using otter trawl data collected from 2013 to 2018. We fitted the growth equations for Pholis fangi, Syngnatus acus, Larimichthys polyactis and Thryssa kammalensis using Electronic Length Frequency Analysis method in combination with the Bootstrap and compared the differences in growth parameters between deep- and shallow-water regions. The results show that growth parameters of the fish species exhibit certain levels of spatial heterogeneity, in particular Syngnatus acus and Larimichthys polyactis show substantial spatial heterogeneity. These differences may be attributed to the variations in spatial physical and chemical conditions, community structure and migration of the species.
  • loading
  • [1]
    von Bertalanffy L. A quantitative theory of organic growth (inquiries on growth laws. Ⅱ)[J]. Human Biology, 1938, 10(2): 181−213.
    [2]
    詹秉义. 渔业资源评估[M]. 北京: 中国农业出版社, 1995: 25-31.

    Zhan Bingyi. Fish Stock Assessment[M]. Beijing: China Agriculture Press, 1995: 25–31.
    [3]
    Beverton R J H, Holt S J. On the Dynamics of Exploited Fish Populations[M]. Netherlands: Springer Science & Business Media, 1957: 35–37.
    [4]
    Du Pontavice H, Randon M, Lehuta S, et al. Investigating spatial heterogeneity of von Bertalanffy growth parameters to inform the stock structuration of common sole, Solea solea, in the Eastern English Channel[J]. Fisheries Research, 2018, 207: 28−36. doi: 10.1016/j.fishres.2018.05.009
    [5]
    Midway S R, Wagner T, Arnott S A, et al. Spatial and temporal variability in growth of southern Flounder (Paralichthys lethostigma)[J]. Fisheries Research, 2015, 167: 323−332. doi: 10.1016/j.fishres.2015.03.009
    [6]
    Williams A J, Farley J H, Hoyle S D, et al. Spatial and sex-specific variation in growth of albacore tuna (Thunnus alalunga) across the South Pacific Ocean[J]. PLoS One, 2012, 7(6): e39318. doi: 10.1371/journal.pone.0039318
    [7]
    Randon M, Réveillac E, Rivot E, et al. Could we consider a single stock when spatial sub-units present lasting patterns in growth and asynchrony in cohort densities? A flatfish case study[J]. Journal of Sea Research, 2018, 142: 91−100. doi: 10.1016/j.seares.2018.09.012
    [8]
    Punt A E. The performance of a size-structured stock assessment method in the face of spatial heterogeneity in growth[J]. Fisheries Research, 2003, 65(1/3): 391−409.
    [9]
    Lorenzen K. Toward a new paradigm for growth modeling in fisheries stock assessments: embracing plasticity and its consequences[J]. Fisheries Research, 2016, 180: 4−22. doi: 10.1016/j.fishres.2016.01.006
    [10]
    刘勇, 程家骅. 小黄鱼Larimichthys polyactis体长−体重关系幂指数与产卵群体空间分布相关性研究[J]. 海洋学报, 2014, 36(6): 124−130. doi: 10.3969/j.issn.0253-4193.2014.06.015

    Liu Yong, Cheng Jiahua. Study on the correlation between spatial distributions of the spawning groups and the power b in length-weight relation function of small yellow croaker (Larimichthys polyactis)[J]. Haiyang Xuebao, 2014, 36(6): 124−130. doi: 10.3969/j.issn.0253-4193.2014.06.015
    [11]
    栾静, 徐宾铎, 薛莹, 等. 海州湾方氏云鳚体长与体重分布特征及其关系[J]. 中国水产科学, 2017, 24(6): 1323−1331.

    Luan Jing, Xu Binduo, Xue Ying, et al. Size distribution and length-weight relationships in Pholis fangi in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2017, 24(6): 1323−1331.
    [12]
    Ma Qiuyun, Jiao Yan, Ren Yiping. Linear mixed-effects models to describe length-weight relationships for yellow croaker (Larimichthys polyactis) along the north coast of China[J]. PLoS One, 2017, 12(2): e0171811. doi: 10.1371/journal.pone.0171811
    [13]
    Ying Yiping, Chen Yong, Lin Longshan, et al. Risks of ignoring fish population spatial structure in fisheries management[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2011, 68(12): 2101−2120. doi: 10.1139/f2011-116
    [14]
    Stephenson R L. Stock complexity in fisheries management: a perspective of emerging issues related to population sub-units[J]. Fisheries Research, 1999, 43(1/3): 247−249.
    [15]
    Xu Binduo, Ren Yiping, Chen Yong, et al. Optimization of stratification scheme for a fishery-independent survey with multiple objectives[J]. Acta Oceanologica Sinica, 2015, 34(12): 154−169. doi: 10.1007/s13131-015-0739-z
    [16]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6–2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, National Standardization Management Committee of China. GB/T 12763.6–2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standard Press of China, 2008.
    [17]
    Pauly D, David N. ELEFAN Ⅰ, a BASIC program for the objective extraction of growth parameters from length-frequency data[J]. Meeresforschung, 1981, 28: 205−211.
    [18]
    Taylor M H, Mildenberger T K. Extending electronic length frequency analysis in R[J]. Fisheries Management and Ecology, 2017, 24(4): 330−338. doi: 10.1111/fme.12232
    [19]
    Efron B, Tibshirani R J. An Introduction to the Bootstrap[M]. Boca Raton, FL: Chapman and Hall/CRC, 1993.
    [20]
    Magnusson A, Punt A E, Hilborn R. Measuring uncertainty in fisheries stock assessment: the delta method, bootstrap, and MCMC[J]. Fish and Fisheries, 2013, 14(3): 325−342. doi: 10.1111/j.1467-2979.2012.00473.x
    [21]
    Powers S, Jones P B. Two basic programs to compute Hotelling's T-square statistic[J]. Educational and Psychological Measurement, 1986, 46(3): 663−665. doi: 10.1177/0013164486463022
    [22]
    Mildenberger T K, Taylor M H, Wolff M. TropFishR: an R package for fisheries analysis with length-frequency data[J]. Methods in Ecology and Evolution, 2017, 8(11): 1520−1527. doi: 10.1111/2041-210X.12791
    [23]
    林美华. 黄海海底地貌分区及地貌类型[J]. 海洋科学, 1989(6): 7−15.

    Lin Meihua. The submarine geomorphological zones and geomorphological types in the Huanghai Sea[J]. Marine Sciences, 1989(6): 7−15.
    [24]
    中国海湾志编撰委员会. 中国海湾志: 第四分册—山东半岛南部和江苏省海湾[M]. 北京: 海洋出版社, 1993.

    China gulf Chronicles compilation committee. Compilation Committee of Chinese Bay: Ⅳ[M]. Beijing: China Ocean Press, 1993.
    [25]
    于非, 张志欣, 刁新源, 等. 黄海冷水团演变过程及其与邻近水团关系的分析[J]. 海洋学报, 2006, 28(5): 26−34. doi: 10.3321/j.issn:0253-4193.2006.05.003

    Yu Fei, Zhang Zhixin, Diao Xinyuan, et al. Analysis of evolution of the Huanghai Sea Cold Water Mass and its relationship with adjacent water masses[J]. Haiyang Xuebao, 2006, 28(5): 26−34. doi: 10.3321/j.issn:0253-4193.2006.05.003
    [26]
    Hilborn R, Walters C J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty[M]. New York: Springer, 1992.
    [27]
    Quinn T J, Deriso R B. Quantitative Fish Dynamics[M]. New York: Oxford University Press, 1999.
    [28]
    Pikitch E K, Santora C, Babcock E A, et al. Ecosystem-based fishery management[J]. Science, 2004, 305(5682): 346−347. doi: 10.1126/science.1098222
    [29]
    Fujita T, Inada T, Ishito Y. Depth-gradient structure of the demersal fish community on the continental shelf and upper slope off Sendai Bay, Japan[J]. Marine Ecology Progress Series, 1995, 118: 13−23. doi: 10.3354/meps118013
    [30]
    Connolly S R, Roughgarden J. A latitudinal gradient in northeast Pacific intertidal community structure: evidence for an oceanographically based synthesis of marine community theory[J]. The American Naturalist, 1998, 151(4): 311−326. doi: 10.1086/286121
    [31]
    Moranta J, Stefanescu C, Massutí E, et al. Fish community structure and depth-related trends on the continental slope of the Balearic Islands (Algerian Basin, western Mediterranean)[J]. Marine Ecology Progress Series, 1998, 171: 247−259. doi: 10.3354/meps171247
    [32]
    李敏, 李增光, 徐宾铎, 等. 时空和环境因子对海州湾方氏云鳚资源丰度分布的影响[J]. 中国水产科学, 2015, 22(4): 812−819.

    Li Min, Li Zengguang, Xu Binduo, et al. Effects of spatiotemporal and environmental factors on the distribution and abundance of Pholis fangi in Haizhou Bay using a generalized additive model[J]. Journal of Fishery Sciences of China, 2015, 22(4): 812−819.
    [33]
    Small L F, Menzies D W. Patterns of primary productivity and biomass in a coastal upwelling region[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1981, 28(2): 123−149. doi: 10.1016/0198-0149(81)90086-8
    [34]
    Ryther J H. Photosynthesis and fish production in the sea[J]. Science, 1969, 166(3901): 72−76. doi: 10.1126/science.166.3901.72
    [35]
    石琼, 范明君, 张勇. 中国经济鱼类志[M]. 武汉: 华中科技大学出版社, 2015.

    Shi Qiong, Fan Mingjun, Zhang Yong. Economic Ichthyography of China[M]. Wuhan: Huazhong University of Science and Technology Press, 2015.
    [36]
    王小荟. 海州湾主要鱼种的空间分布及其与环境因子的关系[D]. 青岛: 中国海洋大学, 2013.

    Wang Xiaohui. Spatial distribution of dominant fish species in Haizhou Bay and their relationships with environmental factors[D]. Qingdao: Ocean University of China, 2013.
    [37]
    徐兆礼, 陈佳杰. 小黄鱼洄游路线分析[J]. 中国水产科学, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014

    Xu Zhaoli, Chen Jiajie. Analysis on migratory routine of Larimichthys polyactis[J]. Journal of Fishery Sciences of China, 2009, 16(6): 931−940. doi: 10.3321/j.issn:1005-8737.2009.06.014
    [38]
    Morais P, Daverat F. An Introduction to Fish Migration[M]. Boca Raton: Chemical Rubber Company Press, 2016.
    [39]
    Secor D H. Migration Ecology of Marine Fishes[M]. Baltimore: Johns Hopkins University Press, 2015.
    [40]
    Thresher R E, Koslow J A, Morison A K, et al. Depth-mediated reversal of the effects of climate change on long-term growth rates of exploited marine fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(18): 7461−7465. doi: 10.1073/pnas.0610546104
    [41]
    Denit K, Sponaugle S. Growth variation, settlement, and spawning of gray snapper across a latitudinal gradient[J]. Transactions of the American Fisheries Society, 2004, 133(6): 1339−1355. doi: 10.1577/T03-156.1
    [42]
    Björnsson B, Steinarsson A, Oddgeirsson M. Optimal temperature for growth and feed conversion of immature cod (Gadus morhua L.)[J]. ICES Journal of Marine Science, 2001, 58(1): 29−38. doi: 10.1006/jmsc.2000.0986
    [43]
    Sinclair A F, Swain D P, Hanson J M. Disentangling the effects of size-selective mortality, density, and temperature on length-at-age[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(2): 372−382. doi: 10.1139/f02-014
    [44]
    Swain D P, Sinclair A F, Hanson J M. Evolutionary response to size-selective mortality in an exploited fish population[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1613): 1015−1022. doi: 10.1098/rspb.2006.0275
    [45]
    Aikio S, Herczeg G, Kuparinen A, et al. Optimal growth strategies under divergent predation pressure[J]. Journal of Fish Biology, 2013, 82(1): 318−331. doi: 10.1111/jfb.12006
    [46]
    Schwamborn R, Mildenberger T K, Taylor M H. Assessing sources of uncertainty in length-based estimates of body growth in populations of fishes and macroinvertebrates with bootstrapped ELEFAN[J]. Ecological Modelling, 2019, 393: 37−51. doi: 10.1016/j.ecolmodel.2018.12.001
    [47]
    Stokes T K, Law R. Fishing as an evolutionary force[J]. Marine Ecology Progress Series, 2000, 208: 307−309.
    [48]
    Ernande B, Dieckmann U, Heino M. Adaptive changes in harvested populations: plasticity and evolution of age and size at maturation[J]. Proceedings of the Royal Society B: Biological Sciences, 2004, 271(1537): 415−423. doi: 10.1098/rspb.2003.2519
    [49]
    Law R. Fishing, selection, and phenotypic evolution[J]. ICES Journal of Marine Science, 2000, 57(3): 659−668. doi: 10.1006/jmsc.2000.0731
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (304) PDF downloads(98) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return