Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Xiao Li,Wang Di,Ma Weiwei, et al. Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea[J]. Haiyang Xuebao,2019, 41(12):1–13,doi:10.3969/j.issn.0253−4193.2019.12.001
Citation: Xiao Li,Wang Di,Ma Weiwei, et al. Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea[J]. Haiyang Xuebao,2019, 41(12):1–13,doi:10.3969/j.issn.0253− 4193.2019.12.001

Kinetic characterization of reactivity of iron dissolution and phosphorus release in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea

doi: 10.3969/j.issn.0253-4193.2019.12.001
  • Received Date: 2018-10-20
  • Rev Recd Date: 2019-12-17
  • Available Online: 2021-04-21
  • Publish Date: 2019-12-25
  • Kinetic dissolution and the reactive continuum model were combined to characterize the reactivity of iron (Fe) and phosphorus (P) in surface sediments of the Changjiang (Yangtze) River Estuary and the adjacent East China Sea. Two kinetic parameters, i.e., theoretical amounts (m0) and apparent rate constant (k) of reactive Fe, were extracted by fitting kinetic dissolution data to the reactive continuum model. Results showed that Fe(Ⅱ) phases occurred in all surface sediments studies, which could be ascribed to rapid reduction of highly reactive organic-bound Fe(Ⅲ) flocculated/precipitated to the sediments. It is inferred that Fe(Ⅱ) occurs mainly as FeCO3 in both the Changjiang (Yangtze )River Estuarine sediments and the adjacent East China Sea sediments. The m0 and k values of Fe(Ⅱ) were controlled mainly by total organic carbon (TOC) contents and clay fractions. Simultaneous release of Fe(Ⅱ) and associated P (mainly exchangeable P and authigenic P) resulted in similar pattern of dissolution kinetics. Relative to P adsorbed on surfaces of Fe(Ⅱ) solid phases, coprecipitated P with Fe(Ⅱ) phases has higher m0 but lower k. In fine-grained sediments with high TOC contents, Fe(Ⅲ) oxides have lower m0 values but higher k in comparison with those in coarse-grained sediments with lower TOC contents, which is caused by different processes of Fe redox cycling. Overall, the dissolution reactivity of P associated with Fe(Ⅲ) phases is largely controlled by the reductive reactivity of Fe(Ⅲ) phases. Our kinetic characterization indicates that flocculation/precipitation has caused reactive Fe enrichment in the estuarine sediments, occurring mainly in a narrow zone of low salinity, but the enrichment could not be revealed by conventional Fe speciation.
  • loading
  • [1]
    Dai Minhan, Martin J M. First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 127−141.
    [2]
    Burban P Y, Lick W, Lick J. The flocculation of fine-grained sediments in estuarine waters[J]. Journal of Geophysical Research: Oceans, 1989, 94(C6): 8323−8330. doi: 10.1029/JC094iC06p08323
    [3]
    Li Chao, Yang Shouye, Lian Ergang, et al. Chemical speciation of iron in sediments from the Changjiang Estuary and East China Sea: iron cycle and paleoenvironmental implications[J]. Quaternary International, 2017, 452: 116−128. doi: 10.1016/j.quaint.2016.07.014
    [4]
    Meng Jia, Yu Zhigang, Yao Qingzhen, et al. Distribution, mixing behavior, and transformation of dissolved inorganic phosphorus and suspended particulate phosphorus along a salinity gradient in the Changjiang Estuary[J]. Marine Chemistry, 2015, 168: 124−134. doi: 10.1016/j.marchem.2014.09.016
    [5]
    Jilbert T, Asmala E, Schröder C, et al. Impacts of flocculation on the distribution and diagenesis of iron in boreal estuarine sediments[J]. Biogeosciences, 2018, 15(4): 1243−1271. doi: 10.5194/bg-15-1243-2018
    [6]
    Sholkovitz E R. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater[J]. Geochimica et Cosmochimica Acta, 1976, 40(7): 831−845. doi: 10.1016/0016-7037(76)90035-1
    [7]
    Herzog S D, Persson P, Kritzberg E S. Salinity effects on iron speciation in boreal river waters[J]. Environmental Science & Technology, 2017, 51(17): 9747−9755.
    [8]
    Forsgren G, Jansson M, Nilsson P. Aggregation and sedimentation of iron, phosphorus and organic carbon in experimental mixtures of freshwater and estuarine water[J]. Estuarine, Coastal and Shelf Science, 1996, 43(2): 259−268. doi: 10.1006/ecss.1996.0068
    [9]
    Burdige D J. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.
    [10]
    Lalonde K, Mucci A, Ouellet A, et al. Preservation of organic matter in sediments promoted by iron[J]. Nature, 2012, 483(7388): 198−200. doi: 10.1038/nature10855
    [11]
    Poulton S W, Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates[J]. Chemical Geology, 2005, 214(3/4): 209−221.
    [12]
    Zhu Maoxu, Hao Xiaochen, Shi Xiaoning, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27(4): 892−905. doi: 10.1016/j.apgeochem.2012.01.004
    [13]
    Larsen O, Postma D, Jakobsen R. The reactivity of iron oxides towards reductive dissolution with ascorbic acid in a shallow sandy aquifer (Rømø, Denmark)[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4827−4835. doi: 10.1016/j.gca.2006.03.027
    [14]
    Postma D. The reactivity of iron oxides in sediments: a kinetic approach[J]. Geochimica et Cosmochimica Acta, 1993, 57(21/22): 5027−5034.
    [15]
    Christoffersen J, Christoffersen M R. The kinetics of dissolution of calcium sulphate dihydrate in water[J]. Journal of Crystal Growth, 1976, 35(1): 79−88. doi: 10.1016/0022-0248(76)90247-5
    [16]
    Meng Jia, Yao Peng, Yu Zhigang, et al. Speciation, bioavailability and preservation of phosphorus in surface sediments of the Changjiang Estuary and adjacent East China Sea inner shelf[J]. Estuarine, Coastal and Shelf Science, 2014, 144: 27−38. doi: 10.1016/j.ecss.2014.04.015
    [17]
    Chen Liangjin, Zhu Maoxu, Yang Guipeng, et al. Reductive reactivity of iron(Ⅲ) oxides in the East China Sea sediments: characterization by selective extraction and kinetic dissolution[J]. PLoS One, 2013, 8(11): e80367. doi: 10.1371/journal.pone.0080367
    [18]
    朱茂旭, 范长清, 杨桂朋, 等. 东海沉积物中铁(Ⅲ)氧化物还原活性的动力学表征[J]. 海洋学报, 2012, 34(4): 67−76.

    Zhu Maoxu, Fan Changqing, Yang Guipeng, et al. Kinetic characterization of reductive reactivity of iron(Ⅲ) oxides in sediments of the East China Sea[J]. Haiyang Xuebao, 2012, 34(4): 67−76.
    [19]
    Larsen O, Postma D. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite[J]. Geochimica et Cosmochimica Acta, 2001, 65(9): 1367−1379. doi: 10.1016/S0016-7037(00)00623-2
    [20]
    Boudreau B P, Ruddick B R. On a reactive continuum representation of organic matter diagenesis[J]. American Journal of Science, 1991, 291(5): 507−538. doi: 10.2475/ajs.291.5.507
    [21]
    Christoffersen J. Kinetics of dissolution of calcium hydroxypatite: Ⅲ. Nucleation-controlled dissolution of a polydisperse sample of crystals[J]. Journal of Crystal Growth, 1980, 49(1): 29−44. doi: 10.1016/0022-0248(80)90057-3
    [22]
    van Der Zee C, van Raaphorst W. Manganese oxide reactivity in North Sea sediments[J]. Journal of Sea Research, 2004, 52(2): 73−85. doi: 10.1016/j.seares.2003.10.005
    [23]
    Hyacinthe C, van Cappellen P. An authigenic iron phosphate phase in estuarine sediments: composition, formation and chemical reactivity[J]. Marine Chemistry, 2004, 91(1/4): 227−251.
    [24]
    Postma D, Jessen S, Hue N T M, et al. Mobilization of arsenic and iron from Red River floodplain sediments, Vietnam[J]. Geochimica et Cosmochimica Acta, 2010, 74(12): 3367−3381. doi: 10.1016/j.gca.2010.03.024
    [25]
    Zhang Jiazhong, Guo Laodong, Fischer C J. Abundance and chemical speciation of phosphorus in sediments of the Mackenzie River Delta, the Chukchi Sea and the Bering Sea: importance of detrital apatite[J]. Aquatic Geochemistry, 2010, 16(3): 353−371. doi: 10.1007/s10498-009-9081-4
    [26]
    Hyacinthe C, Bonneville S, van Cappellen P. Reactive iron(III) in sediments: chemical versus microbial extractions[J]. Geochimica et Cosmochimica Acta, 2006, 70(16): 4166−4180. doi: 10.1016/j.gca.2006.05.018
    [27]
    Folk R L. Petrology of Sedimentary Rocks[M]. Austin: Hemphill Publishing Company, 1980.
    [28]
    Poulton S W, Raiswell R. Chemical and physical characteristics of iron oxides in riverine and glacial meltwater sediments[J]. Chemical Geology, 2005, 218(3/4): 203−221.
    [29]
    Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[M]//Schink B. Advances in Microbial Ecology. New York: Advances in Microbial Ecology, 2000.
    [30]
    Canfield D E, Thamdrup B, Hansen J W. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction[J]. Geochimica et Cosmochimica Acta, 1993, 57(16): 3867−3883. doi: 10.1016/0016-7037(93)90340-3
    [31]
    Yu Changxun, Virtasalo J J, Karlsson T, et al. Iron behavior in a northern estuary: large pools of non-sulfidized Fe(Ⅱ) associated with organic matter[J]. Chemical Geology, 2015, 413: 73−85. doi: 10.1016/j.chemgeo.2015.08.013
    [32]
    Taillefert M, Beckler J S, Cathalot C, et al. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: part II-Iron-sulfur coupling[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 142: 151−166. doi: 10.1016/j.dsr2.2017.06.009
    [33]
    Raiswell R, Canfield D E. The iron biogeochemical cycle past and present[J]. Geochemical Perspectives, 2012, 1(1): 1−220. doi: 10.7185/geochempersp.1.1
    [34]
    Kleber M, Eusterhues K, Keiluweit M, et al. Mineral-organic associations: formation, properties, and relevance in soil environments[M]//Sparks D L. Advances in Agronomy. Amsterdam: Elsevier, 2015: 1-140.
    [35]
    Nickel M, Vandieken V, Brüchert V, et al. Microbial Mn(IV) and Fe(Ⅲ) reduction in northern Barents Sea sediments under different conditions of ice cover and organic carbon deposition[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55(20/21): 2390−2398.
    [36]
    Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643−645. doi: 10.1038/296643a0
    [37]
    Bebie J, Schoonen M A A, Fuhrmann M, et al. Surface charge development on transition metal sulfides: an electrokinetic study[J]. Geochimica et Cosmochimica Acta, 1998, 62(4): 633−642. doi: 10.1016/S0016-7037(98)00058-1
    [38]
    Rozan T F, Taillefert M, Trouwborst R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay: implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnology and Oceanography, 2002, 47(5): 1346−1354. doi: 10.4319/lo.2002.47.5.1346
    [39]
    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: constraints from solid-phase sulfur speciation and stable sulfur isotope[J]. Continental Shelf Research, 2013, 54: 24−36. doi: 10.1016/j.csr.2013.01.002
    [40]
    Zhu Maoxu, Chen Keke, Yang Guipeng, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs)[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811−2828. doi: 10.1002/2016JG003391
    [41]
    Ma Weiwei, Zhu Maoxu, Yang Guipeng, et al. In situ, high-resolution DGT measurements of dissolved sulfide, iron and phosphorus in sediments of the East China Sea: insights into phosphorus mobilization and microbial iron reduction[J]. Marine Pollution Bulletin, 2017, 124(1): 400−410. doi: 10.1016/j.marpolbul.2017.07.056
    [42]
    Kraal P, Burton E D, Rose A L, et al. Sedimentary iron-phosphorus cycling under contrasting redox conditions in a eutrophic estuary[J]. Chemical Geology, 2015, 392: 19−31. doi: 10.1016/j.chemgeo.2014.11.006
    [43]
    Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M]. 3rd ed. New York: Wiley, 1996.
    [44]
    Zhu Maoxu, Chen Liangjin, Yang Guipeng, et al. Kinetic characterization on reductive reactivity of iron(III) oxides in surface sediments of the East China Sea and the influence of repeated redox cycles: implications for microbial iron reduction[J]. Applied Geochemistry, 2014, 42: 16−26. doi: 10.1016/j.apgeochem.2014.01.001
    [45]
    Fan D J, Neuser R D, Sun X G, et al. Authigenic iron oxide formation in the estuarine mixing zone of the Yangtze River[J]. Geo-Marine Letters, 2008, 28(1): 7−14. doi: 10.1007/s00367-007-0084-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (413) PDF downloads(134) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return