Citation: | Zhang Xia,Yu Zenghui,Zhai Shikui, et al. Systematic differences in boron isotope compositions between mid-ocean ridge and back-arc basin hydrothermal fluids[J]. Haiyang Xuebao,2019, 41(11):64–74,doi:10.3969/j.issn.0253−4193.2019.11.007 |
[1] |
Bischoff J L, Dickson F W. Seawater-basalt interaction at 200℃ and 500 bars: Implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry[J]. Earth and Planetary Science Letters, 1975, 25(3): 385−397. doi: 10.1016/0012-821X(75)90257-5
|
[2] |
Humphris S E, Thompson G. Hydrothermal alteration of oceanic basalts by seawater[J]. Geochimica et Cosmochimica Acta, 1978, 42(1): 107−125. doi: 10.1016/0016-7037(78)90221-1
|
[3] |
Mottl M J, Holland H D. Chemical exchange during hydrothermal alteration of basalt by seawater:Ⅰ. Experimental results for major and minor components of seawater[J]. Geochimica et Cosmochimica Acta, 1978, 42(8): 1103−1115. doi: 10.1016/0016-7037(78)90107-2
|
[4] |
Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033−1043. doi: 10.1016/0016-7037(87)90198-0
|
[5] |
Spivack A J, Palmer M R, Edmond J M. The sedimentary cycle of the boron isotopes[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1939−1949. doi: 10.1016/0016-7037(87)90183-9
|
[6] |
Spivack A J, You Chenfeng, Smith H J. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr[J]. Nature, 1993, 363(6425): 149−151. doi: 10.1038/363149a0
|
[7] |
Morris J D, Leeman W P, Tera F. The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics[J]. Nature, 1990, 344(6261): 31−36. doi: 10.1038/344031a0
|
[8] |
You Chenfeng, Spivack A J, Smith J H, et al. Mobilization of boron in convergent margins: Implications for the boron geochemical cycle[J]. Geology, 1993, 21(3): 207−210. doi: 10.1130/0091-7613(1993)021<0207:MOBICM>2.3.CO;2
|
[9] |
You C F, Spivack A J, Gieskes J M, et al. Boron contents and isotopic compositions in pore waters: a new approach to determine temperature induced artifacts-geochemical implications[J]. Marine Geology, 1996, 129(3/4): 351−361.
|
[10] |
Palmer M R, Sturchio N C. The boron isotope systematics of the Yellowstone National Park (Wyoming) hydrothermal system: A reconnaissance[J]. Geochimica et Cosmochimica Acta, 1990, 54(10): 2811−2815. doi: 10.1016/0016-7037(90)90015-D
|
[11] |
Kasemann S A, Meixner A, Erzinger J, et al. Boron isotope composition of geothermal fluids and borate minerals from salar deposits (central Andes/NW Argentina)[J]. Journal of South American Earth Sciences, 2004, 16(8): 685−697. doi: 10.1016/j.jsames.2003.12.004
|
[12] |
Yamaoka K, Hong Ensong, Ishikawa T, et al. Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific[J]. Chemical Geology, 2015, 392: 9−18. doi: 10.1016/j.chemgeo.2014.11.009
|
[13] |
Palmer M R. Boron-isotope systematics of Halmahera arc (Indonesia) lavas: Evidence for involvement of the subducted slab[J]. Geology, 1991, 19(3): 215−217. doi: 10.1130/0091-7613(1991)019<0215:BISOHA>2.3.CO;2
|
[14] |
You C F, Butterfield D A, Spivack A J, et al. Boron and halide systematics in submarine hydrothermal systems: Effects of phase separation and sedimentary contributions[J]. Earth and Planetary Science Letters, 1994, 123(1/3): 227−238.
|
[15] |
Gamo T. Wide variation of chemical characteristics of submarine hydrothermal fluids due to secondary modification processes after high temperature water-rock interaction: a review[M]//Sakai H, Nozaki Y. Biogeochemical Processes and Ocean Flux in the Western Pacific. Tokyo: Terra Scientific Publishing Co., 1995: 425–451.
|
[16] |
Mottl M J, Seewald J S, Wheat C G, et al. Chemistry of hot springs along the Eastern Lau Spreading Center[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1013−1038. doi: 10.1016/j.gca.2010.12.008
|
[17] |
Zeng Zhigang, Wang Xiaoyuan, Chen C T A, et al. Boron isotope compositions of fluids and plumes from the Kueishantao hydrothermal field off northeastern Taiwan: Implications for fluid origin and hydrothermal processes[J]. Marine Chemistry, 2013, 157: 59−66. doi: 10.1016/j.marchem.2013.09.001
|
[18] |
Halbach P, Pracejus B, Maerten A. Geology and mineralogy of massive sulfide ores from the Central Okinawa Trough, Japan[J]. Economic Geology, 1993, 88(8): 2210−2225. doi: 10.2113/gsecongeo.88.8.2210
|
[19] |
Honma H, Kusakabe M, Kagami H, et al. Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin[J]. Geochemical Journal, 1991, 25(2): 121−136. doi: 10.2343/geochemj.25.121
|
[20] |
Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin[J]. Lithos, 2000, 54(3/4): 117−137.
|
[21] |
Halbach P, Hansmann W, Köppel V, et al. Whole-rock and sulfide lead-isotope data from the hydrothermal JADE field in the Okinawa back-arc trough[J]. Mineralium Deposita, 1997, 32(1): 70−78. doi: 10.1007/s001260050073
|
[22] |
曾志刚. 海底热液地质学[M]. 北京: 科学出版社, 2011.
Zeng Zhigang. Submarine Hydrothermal Geology[M]. Beijing: Science Press, 2011.
|
[23] |
Reeves E P, Seewald J S, Saccocia P, et al. Geochemistry of hydrothermal fluids from the PACMANUS, northeast Pual and Vienna woods hydrothermal fields, Manus Basin, Papua New Guinea[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1088−1123. doi: 10.1016/j.gca.2010.11.008
|
[24] |
Kanzaki T, Yoshida M, Nomura M, et al. Boron isotopic composition of fumarolic condensates and sassolites from Satsuma Iwo-Jima, Japan[J]. Geochimica et Cosmochimica Acta, 1979, 43(11): 1859−1863. doi: 10.1016/0016-7037(79)90035-8
|
[25] |
Nomura M, Kanzaki T, Ozawa T, et al. Boron isotopic composition of fumarolic condensates from some volcanoes in Japanese island arcs[J]. Geochimica et Cosmochimica Acta, 1982, 46(11): 2403−2406. doi: 10.1016/0016-7037(82)90212-5
|
[26] |
Rollion-Bard C, Blamart D, Trebosc J, et al. Boron isotopes as pH proxy: A new look at boron speciation in deep-sea corals using 11B MAS NMR and EELS[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1003−1012. doi: 10.1016/j.gca.2010.11.023
|
[27] |
Pagani M, Lemarchand D, Spivack A, et al. A critical evaluation of the boron isotope-pH proxy: The accuracy of ancient ocean pH estimates[J]. Geochimica et Cosmochimica Acta, 2005, 69(4): 953−961. doi: 10.1016/j.gca.2004.07.029
|
[28] |
Kakihana H, Kotaka M, Satoh S, et al. Fundamental studies on the ion-exchange separation of boron isotopes[J]. Bulletin of the Chemical Society of Japan, 1977, 50(1): 158−163. doi: 10.1246/bcsj.50.158
|
[29] |
Liebscher A, Meixner A, Romer R L, et al. Liquid-vapor fractionation of boron and boron isotopes: Experimental calibration at 400℃/23 MPa to 450℃/42 MPa[J]. Geochimica et Cosmochimica Acta, 2005, 69(24): 5693−5704. doi: 10.1016/j.gca.2005.07.019
|
[30] |
Eissen J P, Lefe'vre C, Maillet P, et al. Petrology and geochemistry of the central North Fiji Basin spreading centre (Southwest Pacific) between 16°S and 22°S[J]. Marine Geology, 1991, 98(2/4): 201−239.
|
[31] |
Eissen J P, Nohara M, Cotten J, et al. North Fiji Basin basalts and their magma sources: Part Ⅰ. Incompatible element constraints[J]. Marine Geology, 1994, 116(1/2): 153−178.
|
[32] |
Nohara M, Hirose K, Eissen J P, et al. The North Fiji Basin basalts and their magma sources: Part Ⅱ. Sr-Nd isotopic and trace element constraints[J]. Marine Geology, 1994, 116(1/2): 179−195.
|
[33] |
Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313−345. doi: 10.1144/GSL.SP.1989.042.01.19
|
[34] |
Hart S R, Blusztajn J, Dick H J B, et al. The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24): 4059−4080.
|
[35] |
Escrig S, Bézos A, Goldstein S L, et al. Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin-Tonga arc system[J]. Geochemistry, Geophysics, Geosystems, 2013, 10(4): Q04014.
|
[36] |
Peate D W, Kokfelt T F, Hawkesworth C J, et al. U-series isotope data on Lau Basin glasses: the role of subduction-related fluids during melt generation in back-arc basins[J]. Journal of Petrology, 2001, 42(8): 1449−1470. doi: 10.1093/petrology/42.8.1449
|
[37] |
Hergt J M, Woodhead J D. A critical evaluation of recent models for Lau-Tonga arc-backarc basin magmatic evolution[J]. Chemical Geology, 2007, 245(1/2): 9−44.
|
[38] |
Fretzdorff S, Schwarz-Schampera U, Gibson H L, et al. Hydrothermal activity and magma genesis along a propagating back-arc basin: Valu Fa Ridge (southern Lau Basin)[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B8): B08205.
|
[39] |
Volpe A M, Macdougall J D, Lugmair G W, et al. Fine-scale isotopic variation in Mariana Trough basalts: evidence for heterogeneity and a recycled component in backarc basin mantle[J]. Earth and Planetary Science Letters, 1990, 100(1/3): 251−264.
|
[40] |
Stem R J, Lin Pingnan, Morris J D, et al. Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins[J]. Earth and Planetary Science Letters, 1990, 100(1/3): 210−225.
|
[41] |
李正刚. 西南太平洋弧后盆地岩石地球化学及其成矿指示意义[D]. 杭州: 国家海洋局第二海洋研究所, 2011.
Li Zhenggang. Geochemistry of back-arc basin volcanic rocks, Southwest Pacific: Implication for sea-floor mineralization[D]. Hangzhou: The Second Institute of Oceanography, State Oceanic Administration, 2011.
|
[42] |
Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough: Evidence from boron isotopes[J]. Geological Journal, 2018, 54(1): 605−613. doi: 10.1002/gj.3209
|
[43] |
Guo Kun, Zhai Shikui, Yu Zenghui, et al. Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: implications for the influence of subduction components and the contamination of crustal materials[J]. Journal of Marine Systems, 2018, 180: 140−151. doi: 10.1016/j.jmarsys.2016.11.009
|
[44] |
国坤. 冲绳海槽火山岩浆源区组成及俯冲组分影响的研究[D]. 青岛: 中国海洋大学, 2016.
Guo Kun. Research on volcanic rock magma source composition and subduction composition effects in Okinawa Trough[D]. Qingdao: Ocean University of China, 2016.
|
[45] |
Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145(3/4): 325−394.
|
[46] |
Hauff F, Hoernle K, Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(8): 8913.
|
[47] |
Ishizuka O, Taylor R N, Yuasa M, et al. Processes controlling along-arc isotopic variation of the southern Izu-Bonin arc[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(6): Q06008.
|
[48] |
Shu Yunchao, Nielsen S G, Zeng Zhigang, et al. Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes[J]. Geochimica et Cosmochimica Acta, 2017, 217: 462−491. doi: 10.1016/j.gca.2017.08.035
|
[49] |
Tonarini S, Agostini S, Doglioni C, et al. Evidence for serpentinite fluid in convergent margin systems: The example of El Salvador (Central America) arc lavas[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9): Q09014.
|
[50] |
Scambelluri M, Tonarini S. Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle[J]. Geology, 2012, 40(10): 907−910. doi: 10.1130/G33233.1
|
[51] |
Kim J, Lee I, Lee K Y. S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: Evaluation of magmatic contribution to hydrothermal system[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B12): B12210. doi: 10.1029/2003JB002912
|
[52] |
Yang Kaihui, Scott S D. Magmatic sources of volatiles and metals for volcanogenic massive sulfide deposits on modern and ancient seafloors: Evidence from melt inclusions[M]//Mao J, Bierlein F P. Mineral Deposit Research: Meeting the Global Challenge. Berlin Heidelberg: Springer, 2005: 715-718.
|
[53] |
王淑杰, 翟世奎, 于增慧, 等. 关于现代海底热液活动系统模式的思考[J]. 地球科学, 2018, 43(3): 835−850.
Wang Shujie, Zhai Shikui, Yu Zenghui, et al. Reflections on model of modern seafloor hydrothermal system[J]. Earth Science, 2018, 43(3): 835−850.
|
[54] |
Yu Zenghui, Zhai Shikui, Guo Kun, et al. Helium isotopes in volcanic rocks from the Okinawa Trough—impact of volatile recycling and crustal contamination[J]. Geological Journal, 2016, 51(S1): 376−386.
|