Citation: | Gao Shu,Jia Jianjun,Yang Yang, et al. Obtaining typhoon information from sedimentary records in coastal-shelf waters[J]. Haiyang Xuebao,2019, 41(10):141–160,doi:10.3969/j.issn.0253−4193.2019.10.009 |
[1] |
Holland G J. Global Guide to Tropical Cyclone Forecasting[M]. Switzerland: World Meteorological Organization, Geneva, 1993.
|
[2] |
NOAA. Subject: F1 What regions around the globe have tropical cyclones and who is responsible for forecasting there?[EB/OL]. (2014)[2019–05–30] https://www.aoml.noaa.gov/hrd/tcfaq/F1.html.
|
[3] |
Elsner J B, Liu K B. Examining the ENSO-typhoon hypothesis[J]. Climate Research, 2003, 25: 43−54. doi: 10.3354/cr025043
|
[4] |
Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436(7051): 686−688. doi: 10.1038/nature03906
|
[5] |
Donnelly J P, Woodruff J D. Intense hurricane activity over the past 5, 000 years controlled by El Niño and the West African monsoon[J]. Nature, 2007, 447(7143): 465. doi: 10.1038/nature05834
|
[6] |
廖淦标, 范代读. 全球变暖是否导致台风增强: 古风暴学研究进展与启示[J]. 科学通报, 2008, 53(19): 2907−2922.
Liu K B, Fan Daidu. Perspectives on the linkage between typhoon activity and global warming from recent research advances in paleotempestology[J]. Chinese Science Bulletin, 2008, 53(19): 2907−2922.
|
[7] |
Vecchi G A, Villarini G. Next season's hurricanes[J]. Science, 2014, 343(6171): 618−619. doi: 10.1126/science.1247759
|
[8] |
Tian Yuan, Fan Dejiang, Zhang Xilin, et al. Event deposits of intense typhoons in the muddy wedge of the East China Sea over the past 150 years[J]. Marine Geology, 2019, 410: 109−121. doi: 10.1016/j.margeo.2018.12.010
|
[9] |
任美锷, 张忍顺, 杨巨海, 等. 风暴潮对淤泥质海岸的影响—以江苏省淤泥质海岸为例[J]. 海洋地质与第四纪地质, 1983, 3(4): 1−24.
Ren Meie, Zhang Renshun, Yang Juhai, et al. The influence of storm tide on mud plain coast—with special reference to Jiangsu Province[J]. Marine Geology & Quaternary Geology, 1983, 3(4): 1−24.
|
[10] |
Yang Shilun, Friedrichs C T, Shi Zhong, et al. Morphological response of tidal marshes, flats and channels of the outer Yangtze River mouth to a major storm[J]. Estuaries, 2003, 26(6): 1416−1425. doi: 10.1007/BF02803650
|
[11] |
柏春广, 王建, 徐永辉. 江苏中部海岸全新世中期温暖期风暴潮频率的研究[J]. 海洋学报, 2006, 28(6): 78−85. doi: 10.3321/j.issn:0253-4193.2006.06.011
Bo Chunguang, Wang Jian, Xu Yonghui. Researches on coastal storm surge frequency during the warm period of Middle Holocene in central Jiangsu Province in China[J]. Haiyang Xuebao, 2006, 28(6): 78−85. doi: 10.3321/j.issn:0253-4193.2006.06.011
|
[12] |
王爱军, 叶翔, 陈坚. 台风作用下的港湾型潮滩沉积过程—以2008年“凤凰”台风对福建省罗源湾的影响为例[J]. 海洋学报, 2009, 31(6): 77−86. doi: 10.3321/j.issn:0253-4193.2009.06.009
Wang Aijun, Ye Xiang, Chen Jian. Effects of typhoon on sedimentary processes of embayment tidal flat—A case study from the “Fenghuang” typhoon in 2008[J]. Haiyang Xuebao, 2009, 31(6): 77−86. doi: 10.3321/j.issn:0253-4193.2009.06.009
|
[13] |
Woodruff J D, Donnelly J P, Okusu A. Exploring typhoon variability over the mid-to-late Holocene: evidence of extreme coastal flooding from Kamikoshiki, Japan[J]. Quaternary Science Reviews, 2009, 28(17/18): 1774−1785.
|
[14] |
Zhou Liang, Gao Shu, Yang Yang, et al. Typhoon events recorded in coastal lagoon deposits, southeastern Hainan Island[J]. Acta Oceanologica Sinica, 2017, 36(4): 37−45. doi: 10.1007/s13131-016-0918-6
|
[15] |
Williams H, Choowong M, Phantuwongraj S, et al. Geologic records of Holocene typhoon strikes on the Gulf of Thailand coast[J]. Marine Geology, 2016, 372: 66−78. doi: 10.1016/j.margeo.2015.12.014
|
[16] |
陈联寿, 丁一汇. 西太平洋台风概论[M]. 北京: 科学出版社, 1979.
Chen Lianshou, Ding Yihui. Introduction to the Western Pacific Typhoons[M]. Beijing: Science Press, 1979.
|
[17] |
Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96(10): 669−700. doi: 10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
|
[18] |
Gray W M. Hurricanes: Their formation, structure and likely role in the tropical circulation[M]//Shaw D B. Meteorology Over the Tropical Oceans. Bracknell: Royal Meteorological Society, James Glaisher House, Grenville Place, 1979: 155–218.
|
[19] |
马艳. 台风海面风场的动力分析、四维同化及数值试验[D]. 青岛: 中国科学院海洋研究所, 2000.
Ma Yan. Dynamical analyses, four-dimensional data assimilation and numerical experiment for typhoon sea surface wind[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.
|
[20] |
魏稳. 长江河口边滩多时间尺度动力地貌过程[D]. 上海: 华东师范大学, 2017.
Wei Wen. Multi-time-scale morphodynamics of the Changjiang estuarine marginal shoal[D]. Shanghai: East China Normal University, 2017.
|
[21] |
Maio C V, Donnelly J P, Sullivan R, et al. Sediment dynamics and hydrographic conditions during storm passage, Waquoit Bay, Massachusetts[J]. Marine Geology, 2016, 381: 67−86. doi: 10.1016/j.margeo.2016.07.004
|
[22] |
Hung C W. A 300-year typhoon record in Taiwan and the relationship with solar activity[J]. Terr. Terrestrial, Atmospheric and Oceanic Sciences, 2013, 24(4): 737−743.
|
[23] |
Mei W, Xie S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
|
[24] |
Wei Z J, Tang D L, Sui G J. An inferential statistical study on the climate characteristics of tropical cyclones over the Northwestern Pacific[M]//Tang D, Sui G. Typhoon Impact and Crisis Management. Berlin, Heidelberg: Springer, 2014: 333–349.
|
[25] |
Peduzzi P, Chatenoux B, Dao H, et al. Global trends in tropical cyclone risk[J]. Nature Climate Change, 2012, 2(4): 289−294. doi: 10.1038/nclimate1410
|
[26] |
Webster P J, Holland G J, Curry J A, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309(5742): 1844−1846. doi: 10.1126/science.1116448
|
[27] |
Mei Wei, Xie Shangping, Primeau F, et al. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures[J]. Science Advances, 2015, 1(4): e1500014. doi: 10.1126/sciadv.1500014
|
[28] |
Emanuel K A. The dependence of hurricane intensity on climate[J]. Nature, 1987, 326(6112): 483−485. doi: 10.1038/326483a0
|
[29] |
Knutson T R, Tuleya R E. Impact of CO2-induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization[J]. Journal of Climate, 2004, 17(18): 3477−3495. doi: 10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2
|
[30] |
Knutson T R, McBride J L, Chan J, et al. Tropical cyclones and climate change[J]. Nature Geoscience, 2010, 3(3): 157−163. doi: 10.1038/ngeo779
|
[31] |
Liu K B, Shen Caiming, Louie K S. A 1, 000-Year history of typhoon landfalls in Guangdong, southern China, reconstructed from Chinese historical documentary records[J]. Annals of the Association of American Geographers, 2001, 91(3): 453−464. doi: 10.1111/0004-5608.00253
|
[32] |
García-Herrera R, Durán F R, Wheleerb D, et al. The use of Spanish and British documentary sources in the investigation of Atlantic hurricane incidence in historical times[M]//Murname R, Liu K B. Hurricanes and Typhoons: Past, Present and Future. New York: Columbia University Press, 2004.
|
[33] |
Grossman M, Zaiki M. Reconstructing typhoons in Japan in the 1880s from documentary records[J]. Weather, 2009, 64(12): 315−322. doi: 10.1002/wea.401
|
[34] |
王苏民, 刘健, 周静. 我国小冰期盛期的气候环境[J]. 湖泊科学, 2003, 15(4): 369−376. doi: 10.3321/j.issn:1003-5427.2003.04.013
Wang Sumin, Liu Jian, Zhou Jing. The climate of Little Ice Age maximum in China[J]. Journal of Lake Sciences, 2003, 15(4): 369−376. doi: 10.3321/j.issn:1003-5427.2003.04.013
|
[35] |
陆人骥. 中国历代灾害性海潮史料[M]. 北京: 海洋出版社, 1984.
Lu Renji. Compiling Data on Disastrous Storm Tides in Different Dynasties of China [M]. Beijing: China Ocean Press, 1984.
|
[36] |
火恩杰, 刘昌森. 上海地区自然灾害史料汇编(公元751–1949 年)[M]. 北京: 地震出版社, 2002.
Huo Enjie, Liu Changsen. Compilation of Natural Disaster Data from 751 to 1949 in Shanghai [M]. Beijing: Earthquake Press, 2002.
|
[37] |
张德二. 中国三千年气象记录总集[M]. 南京: 江苏教育出版社, 2004.
Zhang Deer. A Compendium of Chinese Meteorological Records of the Last 3000 Year[M]. Nanjing: Jiangsu Education Publishing House, 2004.
|
[38] |
梁有叶, 张德二. 最近一千年来我国的登陆台风及其与ENSO的关系[J]. 气候变化研究进展, 2007, 3(2): 120−121. doi: 10.3969/j.issn.1673-1719.2007.02.011
Liang Youye, Zhang Deer. Landing typhoon in China during the last millennium and its relationship with ENSO[J]. Advances in Climate Change Research, 2007, 3(2): 120−121. doi: 10.3969/j.issn.1673-1719.2007.02.011
|
[39] |
Louie K S, Liu K B. Earliest historical records of typhoons in China[J]. Journal of Historical Geography, 2003, 29(3): 299−316. doi: 10.1006/jhge.2002.0453
|
[40] |
王美苏. 清代入境中国东部沿海台风事件初步重建[D]. 上海: 复旦大学, 2010.
Wang Meisu. A reconstruction of historical typhoon event invading the coast of East China from historical documentary: 1644–1911[D]. Shanghai: Fudan University, 2010.
|
[41] |
Zhang Xiangping, Ye Yu, Fang Xiuqi. Reconstruction of typhoons in the Yangtze River Delta during 1644–1949AD based on historical chorographies[J]. Journal of Geographical Sciences, 2012, 22(5): 810−824. doi: 10.1007/s11442-012-0965-7
|
[42] |
徐明, 杨秋珍, 应明, 等. 影响华东台风 500 年历史资料重建方法[C]//2007年中国气象学会年会论文集. 北京: 气象出版社, 2007: 1000-1009.
Xu Ming, Yang Qiuzhen, Ying Ming, et al. Reconstruction method of 500 years historical typhoon data impacting East China[C]//Annual Meeting of China Meteorological Society in 2007. Beijing: China Meteorological Press, 2007: 1000–1009.
|
[43] |
潘威, 满志敏, 刘大伟, 等. 1644–1911年中国华东与华南沿海台风入境频率[J]. 地理研究, 2014, 33(11): 2195−2204.
Pan Wei, Man Zhimin, Liu Dawei, et al. The changing of Chinese coastal typhoon frequency based on historical documents, 1644–1911AD[J]. Geographical Research, 2014, 33(11): 2195−2204.
|
[44] |
刘大伟. 清代入境中国南部沿海台风事件初步重建[D]. 上海: 复旦大学, 2013.
Liu Dawei. Preliminary reconstruction of China's southern coastal typhoon events at Qing dynasty[D]. Shanghai: Fudan University, 2013.
|
[45] |
日下部正雄. 史料からみた西日本の気象災害—第2報台风[J]. 天気, 1960, 7(1): 16−21.
Kusakabe M. Historical review of meteorological damage in west part of Japan, II Typhoons[J]. Tenki, 1960, 7(1): 16−21.
|
[46] |
小西達男. 1828年シーボルト台風(子年の大風)と高潮[J]. 天気, 2010, 57(6): 383−398.
Konishi T. Siebold typhoon in 1828 (Otherwise “Nenotoshi” Typhoon) and induced storm surges[J]. Tenki, 2010, 57(6): 383−398.
|
[47] |
周亮, 高抒, 杨阳, 等. 海南岛东南部海湾350年古风暴事件沉积与历史文献记录对比[J]. 海洋学报, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009
Zhou Liang, Gao Shu, Yang Yang, et al. Comparison of paleostorm events between sedimentary and historical archives: A 350 year record from southeastern Hainan Island coastal embayments[J]. Haiyang Xuebao, 2015, 37(9): 84−94. doi: 10.3969/j.issn.0253-4193.2015.09.009
|
[48] |
Schuerch M, Dolch T, Reise K, et al. Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea)[J]. Progress in Physical Geography, 2014, 38(6): 691−715. doi: 10.1177/0309133314548746
|
[49] |
苗丽敏, 杨世伦, 朱琴, 等. 风暴过程中潮滩悬沙浓度和悬沙输运的变化及其动力机制——以长江三角洲南汇潮滩为例[J]. 海洋学报, 2016, 38(5): 158−167. doi: 10.3969/j.issn.0253-4193.2016.05.015
Miao Limin, Yang Shilun, Zhu Qin, et al. Variations of suspended sediment concentrations and transport in response to a storm and its dynamic mechanism—A study case of Nanhui tidal flat of the Yangtze River Delta[J]. Haiyang Xuebao, 2016, 38(5): 158−167. doi: 10.3969/j.issn.0253-4193.2016.05.015
|
[50] |
Rosencranz J A, Ganju N K, Ambrose R F, et al. Balanced sediment fluxes in Southern California's Mediterranean-climate zone salt marshes[J]. Estuaries and Coasts, 2016, 39(4): 1035−1049. doi: 10.1007/s12237-015-0056-y
|
[51] |
Janssen-Stelder B. The effect of different hydrodynamic conditions on the morphodynamics of a tidal mudflat in the Dutch Wadden Sea[J]. Continental Shelf Research, 2000, 20(12/13): 1461−1478.
|
[52] |
Mariotti G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss?[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(7): 1391−1407. doi: 10.1002/2016JF003900
|
[53] |
Priestas A M, Mariotti G, Leonardi N, et al. Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA[J]. Journal of Marine Science and Engineering, 2015, 3(3): 1041−1065. doi: 10.3390/jmse3031041
|
[54] |
Xie Weiming, He Qing, Zhang Keqi, et al. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale[J]. Geomorphology, 2017, 292: 47−58. doi: 10.1016/j.geomorph.2017.04.034
|
[55] |
Fagherazzi S, Carniello L, D’Alpaos L, et al. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(22): 8337−8341. doi: 10.1073/pnas.0508379103
|
[56] |
Anthony E J. Storms, shoreface morphodynamics, sand supply, and the accretion and erosion of coastal dune barriers in the southern North Sea[J]. Geomorphology, 2013, 199: 8−21. doi: 10.1016/j.geomorph.2012.06.007
|
[57] |
Hill H W, Kelley J T, Belknap D F, et al. The effects of storms and storm-generated currents on sand beaches in southern Maine, USA[J]. Marine Geology, 2004, 210(1/4): 149−168.
|
[58] |
Short A D. Beach systems of the central netherlands coast: processes, morphology and structural impacts in a storm driven multi-bar system[J]. Marine Geology, 1992, 107(1/2): 103−137.
|
[59] |
Castelle B, Bonneton P, Dupuis H, et al. Double bar beach dynamics on the high-energy meso-macrotidal french aquitanian coast: a review[J]. Marine Geology, 2007, 245(1/4): 141−159.
|
[60] |
Dissanayake P, Brown J, Karunarathna H. Impacts of storm chronology on the morphological changes of the formby beach and dune system, UK[J]. Natural Hazards and Earth System Sciences, 2015, 15(7): 1533−1543. doi: 10.5194/nhess-15-1533-2015
|
[61] |
戴志军, 陈子燊, 李春初. 岬间海滩剖面短期变化的动力作用分析[J]. 海洋科学, 2001, 25(11): 38−41. doi: 10.3969/j.issn.1000-3096.2001.11.011
Dai Zhijun, Chen Zishen, Li Chunchu. Analysis of dynamical actions on the process of beach profile between headlands over a short time[J]. Marine Sciences, 2001, 25(11): 38−41. doi: 10.3969/j.issn.1000-3096.2001.11.011
|
[62] |
蔡锋, 苏贤泽, 曹惠美, 等. 华南砂质海滩的动力地貌分析[J]. 海洋学报, 2005, 27(2): 106−114. doi: 10.3321/j.issn:0253-4193.2005.02.013
Cai Feng, Su Xianze, Cao Huimei, et al. Analysis on morphodynamics of sandy beaches in South China[J]. Haiyang Xuebao, 2005, 27(2): 106−114. doi: 10.3321/j.issn:0253-4193.2005.02.013
|
[63] |
Sallenger A H Jr. Storm impact scale for barrier islands[J]. Journal of Coastal Research, 2000, 16(3): 890−895.
|
[64] |
Reading H G. Sedimentary Environments and Facies[M]. 2nd ed. Oxford: Blackwell Scientific Publications, 1986: 615.
|
[65] |
Zhou Liang, Yang Yang, Wang Zhanghua, et al. Investigating ENSO and WPWP modulated typhoon variability in the South China Sea during the mid-late Holocene using sedimentological evidence from southeastern Hainan Island, China[J]. Marine Geology, 2019, 416: 105987. doi: 10.1016/j.margeo.2019.105987
|
[66] |
Sakuna-Schwartz D, Feldens P, Schwarzer K, et al. Internal structure of event layers preserved on the Andaman Sea continental shelf, Thailand: tsunami vs. storm and flash-flood deposits[J]. Natural Hazards and Earth System Sciences, 2015, 15(6): 1181−1199. doi: 10.5194/nhess-15-1181-2015
|
[67] |
Cunningham A C, Bakker M A J, Van Heteren S, et al. Extracting storm-surge data from coastal dunes for improved assessment of flood risk[J]. Geology, 2011, 39(11): 1063−1066. doi: 10.1130/G32244.1
|
[68] |
王建, 柏春广, 徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014
Wang Jian, Bo Chunguang, Xu Yonghui. Mechanism of silt-mud couplet of mud tidal flat and discrimination criteria of storm surge sedimentation in the middle Jiangsu Province[J]. Acta Sedimentologica Sinica, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014
|
[69] |
Liu K B. Paleotempestology[M]//Elias S C. Encyclopedia of Quaternary Science. Amsterdam: Elsevier, 2006.
|
[70] |
Rankey E C, Enos P, Steffen K, et al. Lack of impact of hurricane Michelle on tidal flats, Andros island, Bahamas: integrated remote sensing and field observations[J]. Journal of Sedimentary Research, 2004, 74(5): 654−661. doi: 10.1306/021704740654
|
[71] |
赵秧秧, 高抒. 台风风暴潮影响下潮滩沉积动力模拟初探——以江苏如东海岸为例[J]. 沉积学报, 2015, 33(1): 79−90.
Zhao Yangyang, Gao Shu. Simulation of tidal flat sedimentation in response to typhoon-induced storm surges: a case study from Rudong coast, Jiangsu, China[J]. Acta Sedimentologica Sinica, 2015, 33(1): 79−90.
|
[72] |
Harms J C, Southard J B, Spearing D R, et al. Depositional Environments as Interpreted from Primary Sedimentary Structures and Stratification Sequence[M]. Texas: Society of Economic Paleontologists and Mineralogists, 1975: 161.
|
[73] |
Lambert W J, Aharon P, Rodriguez A B. Catastrophic hurricane history revealed by organic geochemical proxies in coastal lake sediments: a case study of Lake Shelby, Alabama (USA)[J]. Journal of Paleolimnology, 2008, 39(1): 117−131. doi: 10.1007/s10933-007-9101-6
|
[74] |
Williams H F L. 600-year sedimentary archive of hurricane strikes in a prograding beach ridge plain, southwestern Louisiana[J]. Marine Geology, 2013, 336: 170−183. doi: 10.1016/j.margeo.2012.12.005
|
[75] |
Wallace D J, Woodruff J D, Anderson J B, et al. Palaeohurricane reconstructions from sedimentary archives along the Gulf of Mexico, Caribbean Sea and western North Atlantic Ocean margins[J]. Geological Society, London, Special Publications, 2014, 388(1): 481−501. doi: 10.1144/SP388.12
|
[76] |
Zhao Yifei, Zou Xinqing, Gao Jianhua, et al. Recent sedimentary record of storms and floods within the estuarine-inner shelf region of the East China Sea[J]. The Holocene, 2016, 27(3): 439−449.
|
[77] |
Smith T A, Chen S, Campbell T, et al. Ocean–wave coupled modeling in COAMPS-TC: A study of Hurricane Ivan (2004)[J]. Ocean Modelling, 2013, 69(2): 181−194.
|
[78] |
田元, 范德江, 张喜林, 等. 东海内陆架沉积物敏感粒级构成及其地质意义[J]. 海洋与湖沼, 2016, 47(2): 30−37.
Tian Yuan, Fan Dejiang, Zhang Xilin. Sensitive grain size components and their geological implication in the inner shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2016, 47(2): 30−37.
|
[79] |
Jia Jianjun, Gao Jianhua, Cai Tinglu, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2−16. doi: 10.1016/j.margeo.2018.04.005
|
[80] |
Gao Jianhua, Shi Yong, Sheng Hui, et al. Rapid response of the Changjiang (Yangtze) River and East China Sea source-to-sink conveying system to human induced catchment perturbations[J]. Marine Geology, 2019, 414: 1−17. doi: 10.1016/j.margeo.2019.05.003
|
[81] |
Xiao Shangbin, Li Anchun, Jiang Fuqing, et al. Recent 2000-year geological records of mud in the inner shelf of the East China Sea and their climatic implications[J]. Chinese Science Bulletin, 2005, 50(5): 466−471. doi: 10.1007/BF02897464
|
[82] |
Li Yuhai, Wang Aijun, Qiao Lei, et al. The impact of typhoon Morakot on the modern sedimentary environment of the mud deposition center off the Zhejiang–Fujian coast, China[J]. Continental Shelf Research, 2012, 37: 92−100. doi: 10.1016/j.csr.2012.02.020
|
[83] |
Gao Shu, Liu Yunling, Yang Yang, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562−573. doi: 10.1016/j.jseaes.2015.07.024
|
[84] |
任美锷, 张忍顺, 杨巨海. 江苏王港地区淤泥质潮滩的沉积作用[J]. 海洋通报, 1984, 3(1): 40−52.
Ren Meie, Zhang Renshun, Yang Juhai. Sedimentation on tidal mud flat in Wanggang area, Jiangsu Province, China[J]. Marine Science Bulletin, 1984, 3(1): 40−52.
|
[85] |
许世远, 邵虚生, 陈中原, 等. 长江三角洲风暴沉积系列研究[J]. 中国科学: B辑, 1990, 33(10): 1242−1250.
Xu Shiyuan, Shao Xusheng, Chen Zhongyuan, et al. Storm deposits in the Changjiang delta[J]. Science in China: Series B, 1990, 33(10): 1242−1250.
|
[86] |
Shao X S, Yan Q S, Xu S Y, et al. Storm deposits in the coastal region of Shanghai, the Yangtze Delta, China[J]. Geologie en Mijnbouw, 1991, 70: 45−58.
|
[87] |
张国栋, 王益友, 朱静昌, 等. 现代滨岸风暴沉积—以舟山普陀岛、朱家尖岛为例[J]. 沉积学报, 1987, 5(2): 17−28.
Zhang Guodong, Wang Yiyou, Zhu Jingchang, et al. Modern coastal storm deposits of Putuo Island and Zhujiajian Island, Zhoushan[J]. Acta Sedimentologica Sinica, 1987, 5(2): 17−28.
|
[88] |
陈卫跃. 潮滩泥沙输移及沉积动力环境—以杭州湾北岸、长江口南岸部分潮滩为例[J]. 海洋学报, 1991, 13(6): 813−821.
Chen Weiyue. Sediment dynamics and transport in tidal flat: A case study of the north Hangzhou Bay and south Yangtze River estuary[J]. Haiyang Xuebao, 1991, 13(6): 813−821.
|
[89] |
Ren Meie, Zhang Renshun, Yang Juhai. Effect of typhoon no. 8114 on coastal morphology and sedimentation of Jiangsu Province, People’s Republic of China[J]. Journal of Coastal Research, 1985, 1(1): 21−28.
|
[90] |
Gao Shu. Modeling the preservation potential of tidal flat sedimentary records, Jiangsu coast, eastern China[J]. Continental Shelf Research, 2009, 29(16): 1927−1936. doi: 10.1016/j.csr.2008.12.010
|
[91] |
Liu K B. Paleotempestology: Principles, methods, and examples from gulf coast lake-sediments[M]//Murnane R J, Liu K B. Hurricanes and Typhoons: Past, Present, and Future. New York: Columbia University Press, 2004: 13-57.
|
[92] |
黄光庆, 严维枢. 有孔虫指示的珠江口全新世风暴潮沉积信息[J]. 科学通报, 1997, 42(4): 423−426. doi: 10.3321/j.issn:0023-074X.1997.04.027
Huang Guangqing, Yan Weishu. Holocene storm deposits information of the Pearl estuary indicated by foraminifera[J]. Chinese Science Bulletin, 1997, 42(4): 423−426. doi: 10.3321/j.issn:0023-074X.1997.04.027
|
[93] |
Collins E S, Scott D B, Gayes P T. Hurricane records on the South Carolina coast: Can they be detected in the sediment record?[J]. Quaternary International, 1999, 56(1): 15−26. doi: 10.1016/S1040-6182(98)00013-5
|
[94] |
Nott J. Palaeotempestology: the study of prehistoric tropical cyclones—a review and implications for hazard assessment[J]. Environment International, 2004, 30(3): 433−447. doi: 10.1016/j.envint.2003.09.010
|
[95] |
Katsuki K, Yang D Y, Seto K, et al. Factors controlling typhoons and storm rain on the Korean Peninsula during the Little Ice Age[J]. Journal of Paleolimnology, 2016, 55(1): 35−48. doi: 10.1007/s10933-015-9861-3
|
[96] |
Chen H F, Wen S Y, Song Senrong, et al. Strengthening of paleo-typhoon and autumn rainfall in Taiwan corresponding to the Southern Oscillation at late Holocene[J]. Journal of Quaternary Science, 2012, 27(9): 964−972. doi: 10.1002/jqs.2590
|
[97] |
Donnelly C, Kraus N, Larson M. State of knowledge on measurement and modeling of coastal overwash[J]. Journal of Coastal Research, 2006, 22(4): 965−991.
|
[98] |
King C A M. Beaches and Coasts[M]. 2nd ed. London: Palgrave Macmillan, 1972: 570.
|
[99] |
Shaw J, You Yao, Mohrig D, et al. Tracking hurricane-generated storm surge with washover fan stratigraphy[J]. Geology, 2015, 43(2): 127−130. doi: 10.1130/G36460.1
|
[100] |
Phantuwongraj S, Choowong M, Nanayama F, et al. Coastal geomorphic conditions and styles of storm surge washover deposits from Southern Thailand[J]. Geomorphology, 2013, 192: 43−58. doi: 10.1016/j.geomorph.2013.03.016
|
[101] |
Wang Ping, Horwitz M H. Erosional and depositional characteristics of regional overwash deposits caused by multiple hurricanes[J]. Sedimentology, 2007, 54(3): 545−564. doi: 10.1111/j.1365-3091.2006.00848.x
|
[102] |
杨保明, 高抒, 周亮, 等. 海南岛东南部海岸砂丘风暴冲越沉积记录[J]. 沉积学报, 2017, 35(6): 1133−1143.
Yang Baoming, Gao Shu, Zhou Liang, et al. A coastal dune overwash record of typhoon storm events from southeastern Hainan Island[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1133−1143.
|
[103] |
Nott J F. Extremely high-energy wave deposits inside the Great Barrier Reef, Australia: determining the cause—tsunami or tropical cyclone[J]. Marine Geology, 1997, 141(1/4): 193−207.
|
[104] |
Frohlich C, Hornbach M J, Taylor F W, et al. Huge erratic boulders in Tonga deposited by a prehistoric tsunami[J]. Geology, 2009, 37(2): 131−134. doi: 10.1130/G25277A.1
|
[105] |
Kennedy A B, Mori N, Yasuda T, et al. Extreme block and boulder transport along a cliffed coastline (Calicoan Island, Philippines) during Super Typhoon Haiyan[J]. Marine Geology, 2017, 383: 65−77. doi: 10.1016/j.margeo.2016.11.004
|
[106] |
Scheffers A. Tsunami boulder deposits[M]//Shiki T, Tsuji Y, Yamazaki T, et al. Tsunamiites. Features and Implications. Amsterdam: Elsevier, 2008: 299-317.
|
[107] |
Goto K, Kawana T, Imamura F. Historical and geological evidence of boulders deposited by tsunamis, southern Ryukyu Islands, Japan[J]. Earth-Science Reviews, 2010, 102(1/2): 77−99.
|
[108] |
Dawson A G, Stewart I, Morton R A, et al. Reply to comments by Kelletat (2008) Comments to Dawson, A. G. and Stewart, I. Tsunami deposits in the geological record[J]. Sedimentary Geology, 2008, 211(3/4): 92−93.
|
[109] |
Goto K, Miyagi K, Kawana T, et al. Emplacement and movement of boulders by known storm waves—field evidence from the Okinawa Islands, Japan[J]. Marine Geology, 2011, 283(1/4): 66−78.
|
[110] |
Nandasena N A K, Paris R, Tanaka N. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis)[J]. Marine Geology, 2011, 281(1/4): 70−84.
|
[111] |
Hongo C, Kurihara H, Golbuu Y. Coral boulders on Melekeok reef in the Palau Islands: An indicator of wave activity associated with tropical cyclones[J]. Marine Geology, 2018, 399: 14−22. doi: 10.1016/j.margeo.2018.02.004
|
[112] |
Mastronuzzi G, Pignatelli C. The boulder berm of Punta Saguerra (Taranto, Italy): a morphological imprint of the Rossano Calabro tsunami of April 24, 1836?[J]. Earth, Planets and Space, 2012, 64(10): 829−842. doi: 10.5047/eps.2011.08.018
|
[113] |
Hoffmeister D, Ntageretzis K, Aasen H, et al. 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by terrestrial laser scanning[J]. Zeitschrift für Geomorphologie, Supplementary Issues, 2014, 58(3): 115−135. doi: 10.1127/0372-8854/2013/S-00126
|
[114] |
Telling J, Lyda A, Hartzell P, et al. Review of Earth science research using terrestrial laser scanning[J]. Earth-Science Reviews, 2017, 169: 35−68. doi: 10.1016/j.earscirev.2017.04.007
|
[115] |
Roig-Munar F X, Rodríguez-Perea A, Vilaplana J M, et al. Tsunami boulders in Majorca Island (Balearic Islands, Spain)[J]. Geomorphology, 2019, 334: 76−90. doi: 10.1016/j.geomorph.2019.02.012
|
[116] |
Kennedy D M, Woods J L D, Naylor L A, et al. Intertidal boulder-based wave hindcasting can underestimate wave size: Evidence from Yorkshire, UK[J]. Marine Geology, 2019, 411: 98−106. doi: 10.1016/j.margeo.2019.02.002
|
[117] |
Hastewell L J, Schaefer M, Bray M, et al. Intertidal boulder transport: A proposed methodology adopting Radio Frequency Identification (RFID) technology to quantify storm induced boulder mobility[J]. Earth Surface Processes and Landforms, 2019, 44(3): 681−698. doi: 10.1002/esp.4523
|
[118] |
Gandhi D, Chavare K A, Prizomwala S P, et al. Testing the numerical models for boulder transport through high energy marine wave event: An example from southern Saurashtra, western India[J]. Quaternary International, 2017, 444: 209−216. doi: 10.1016/j.quaint.2016.05.021
|
[119] |
Herterich J G, Cox R, Dias F. How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms[J]. Marine Geology, 2018, 399: 34−46. doi: 10.1016/j.margeo.2018.01.003
|
[120] |
徐笑梅, 高抒, 周亮, 等. 海南岛东北部海岸极端波浪事件沉积记录[J]. 海洋学报, 2019, 41(6): 48−63. doi: 10.3969/j.issn.0253-4193.2019.06.005
Xu Xiaomei, Gao Shu, Zhou Liang, et al. Sedimentary records of extreme wave events on the northeastern Hainan Island coast, southern China[J]. Haiyang Xuebao, 2019, 41(6): 48−63. doi: 10.3969/j.issn.0253-4193.2019.06.005
|
[121] |
Wheatcroft R A, Drake D E. Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation[J]. Marine Geology, 2003, 199(1/2): 123−137.
|
[122] |
Hippensteel S P. Preservation potential of storm deposits in South Carolina back-barrier marshes[J]. Journal of Coastal Research, 2008, 243: 594−601. doi: 10.2112/05-0624.1
|
[123] |
Hart M. Evaluating the preservation of hurricane deposits in Florida coastal sediments[D]. Gainesville: University of Florida, 2003.
|
[124] |
Liu K B, Li C, Bianchette T A, et al. Storm deposition in a coastal backbarrier lake in Louisiana caused by Hurricanes Gustav and Ike[J]. Journal of Coastal Research, 2011, 64: 1866−1870.
|
[125] |
Tamura T. Beach ridges and prograded beach deposits as palaeoenvironment records[J]. Earth-Science Reviews, 2012, 114(3/4): 279−297.
|
[126] |
Toomey M, Cantwell M, Colman S, et al. The mighty Susquehanna—extreme floods in Eastern North America during the past two millennia[J]. Geophysical Research Letters, 2019, 46(6): 3398−3407. doi: 10.1029/2018GL080890
|
[127] |
Kreisa R D. Storm-generated sedimentary structures in subtidal marine facies with examples from the Middle and Upper Ordovician of southwestern Virginia[J]. Journal of Sedimentary Research, 1981, 51(3): 823−848.
|
[128] |
严钦尚. 论滨岸和浅海的风暴沉积[J]. 海洋与湖沼, 1984, 15(1): 14−20.
Yan Qinshang. Overview of the storm-generated deposits on nearshore zone and open shelf[J]. Oceanologia et Limnologia Sinica, 1984, 15(1): 14−20.
|
[129] |
Liu K B, Fearn M L. Lake-sediment record of late Holocene hurricane activities from coastal Alabama[J]. Geology, 1993, 21(9): 793−796. doi: 10.1130/0091-7613(1993)021<0793:LSROLH>2.3.CO;2
|
[130] |
Bregy J C, Wallace D J, Minzoni R T, et al. 2500-year paleotempestological record of intense storms for the northern Gulf of Mexico, United States[J]. Marine Geology, 2018, 396: 26−42. doi: 10.1016/j.margeo.2017.09.009
|
[131] |
Yu Kefu, Zhao Jianxin, Collerson K D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 89−100. doi: 10.1016/j.palaeo.2004.04.002
|
[132] |
Cox R, Jahn K L, Watkins O G, et al. Extraordinary boulder transport by storm waves(West of Ireland, Winter 2013-2014), and criteria for analysing coastal boulder deposits[J]. Earth-Science Reviews, 2018, 177: 623−636. doi: 10.1016/j.earscirev.2017.12.014
|
[133] |
王为, 李平日, 谭惠忠, 等. 南海北部长湾风暴潮贝壳堤的沉积特征及发育模式[J]. 地质学报, 2010, 84(12): 1829−1838.
Wang Wei, Li Pingri, Tan Huizhong, et al. Depositional characteristics and development model of a chenier built up by storm surges on the coast of the northern South China Sea[J]. Acta Geologica Sinca, 2010, 84(12): 1829−1838.
|
[134] |
Nott J F, Forsyth A, Rhodes E, et al. The origin of centennial-to millennial-scale chronological gaps in storm emplaced beach ridge plains[J]. Marine Geology, 2015, 367: 83−93. doi: 10.1016/j.margeo.2015.05.011
|
[135] |
Allison M A, Sheremet A, Goñi M A, et al. Storm layer deposition on the Mississippi–Atchafalaya subaqueous delta generated by Hurricane Lili in 2002[J]. Continental Shelf Research, 2005, 25(18): 2213−2232. doi: 10.1016/j.csr.2005.08.023
|
[136] |
Wang Jian, Bai Chunguang, Xu Yonghui, et al. Tidal couplet formation and preservation, and criteria for discriminating storm-surge sedimentation on the tidal flats of central Jiangsu Province, China[J]. Journal of Coastal Research, 2010, 26(5): 976−981.
|
[137] |
Hamblin A P, Duke W L, Walker R G. Hummocky cross-stratification—indicator of storm-dominated shallow-marine environments[J]. AAPG Bulletin, 1979, 63(3): 460−461.
|
[138] |
Hong I, Pilarczyk J E, Horton B P, et al. Sedimentological characteristics of the 2015 Tropical Cyclone Pam overwash sediments from Vanuatu, South Pacific[J]. Marine Geology, 2018, 396: 205−214. doi: 10.1016/j.margeo.2017.05.011
|
[139] |
Nott J F. Intensity of prehistoric tropical cyclones[J]. Journal of Geophysical Research, 2003, 108(D7): 4212. doi: 10.1029/2002JD002726
|
[140] |
王为, 谭惠忠. 贝壳堤的形成与风暴沉积——以广东台山长湾贝壳堤为例[J]. 热带地理, 2003, 23(3): 209−213. doi: 10.3969/j.issn.1001-5221.2003.03.003
Wang Wei, Tan Huizhong. Formation of a chenier and storm deposits—A case study of the coast of south China[J]. Tropical Geography, 2003, 23(3): 209−213. doi: 10.3969/j.issn.1001-5221.2003.03.003
|
[141] |
王强, 袁桂邦, 张熟, 等. 渤海湾西岸贝壳堤堆积与海陆相互作用[J]. 第四纪研究, 2007, 27(5): 775−786. doi: 10.3321/j.issn:1001-7410.2007.05.019
Wang Qiang, Yuan Guibang, Zhang Shu, et al. Shelly ridge accumulation and sea-land interaction on the west coast of the Bohai Bay[J]. Quaternary Sciences, 2007, 27(5): 775−786. doi: 10.3321/j.issn:1001-7410.2007.05.019
|
[142] |
Goto K, Okada K, Imamura F. Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan[J]. Marine Geology, 2009, 262(1/4): 14−24.
|
[143] |
Terry J P, Oliver G J H, Friess D A. Ancient high-energy storm boulder deposits on Ko Samui, Thailand, and their significance for identifying coastal hazard risk[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 454: 282−293. doi: 10.1016/j.palaeo.2016.04.046
|
[144] |
Schwartz R K. Bedform and stratification characteristics of some modern small-scale washover sand bodies[J]. Sedimentology, 1982, 29(6): 835−849. doi: 10.1111/j.1365-3091.1982.tb00087.x
|
[145] |
李平日, 黄光庆, 谭惠忠, 等. 珠江口地区风暴潮沉积的研究[M]. 广州: 广东科技出版社, 2002: 153.
Li Pingri, Huang Guangqing, Tan Huizhong, et al. Storm Sedimentation in the Pearl River Estuary[M]. Guangzhou: Guangdong Science &Technology Press, 2002: 153.
|
[146] |
高抒. 海洋沉积动力学研究导引[M]. 南京: 南京大学出版社, 2013: 398.
Gao Shu. Introduction to Marine Sedimentary Dynamics[M]. Nanjing: Nanjing University Press, 2013: 398.
|
[147] |
Nanayama F, Shigeno K, Satake K, et al. Sedimentary differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan[J]. Sedimentary Geology, 2000, 135(1/4): 255−264.
|
[148] |
Zhang Erfeng, Gao Shu, Savenije H H G, et al. Saline water intrusion in relation to strong winds during winter cold outbreaks: North Branch of the Yangtze Estuary[J]. Journal of Hydrology, 2019, 574: 1099−1109. doi: 10.1016/j.jhydrol.2019.04.096
|
[149] |
Fan Dejiang, Qi Hongyan, Sun Xiaoxia, et al. Annual lamination and its sedimentary implications in the Yangtze River delta inferred from high-resolution biogenic silica and sensitive grain-size records[J]. Continental Shelf Research, 2011, 31(2): 129−137. doi: 10.1016/j.csr.2010.12.001
|
[150] |
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994, 114(3/4): 289−302.
|
[151] |
Horowitz A J, Elrick K A, Smith J J, et al. The effects of hurricane Irene and tropical storm Lee on the bed sediment geochemistry of U. S. Atlantic coastal rivers[J]. Hydrological Processes, 2014, 28(3): 1250−1259. doi: 10.1002/hyp.9635
|
[152] |
Morton R A, Gelfenbaum G, Jaffe B E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples[J]. Sedimentary Geology, 2007, 200(3/4): 184−207.
|
[153] |
Yue Yuanfu, Yu Kefu, Tao Shichen, et al. 3500-year western Pacific storm record warns of additional storm activity in a warming warm pool[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 521: 57−71. doi: 10.1016/j.palaeo.2019.02.009
|
[154] |
Kortekaas S, Dawson A G. Distinguishing tsunami and storm deposits: an example from Martinhal, SW Portugal[J]. Sedimentary Geology, 2007, 200(3/4): 208−221.
|
[155] |
Phantuwongraj S, Choowong M. Tsunamis versus storm deposits from Thailand[J]. Natural Hazards, 2012, 63(1): 31−50. doi: 10.1007/s11069-011-9717-8
|
[156] |
Sun Liguang, Zhou Xin, Huang Wen, et al. Preliminary evidence for a 1 000-year-old tsunami in the South China Sea[J]. Scientific Reports, 2013, 3: 1655. doi: 10.1038/srep01655
|
[157] |
杨文卿, 孙立广, 杨仲康, 等. 南澳宋城: 被海啸毁灭的古文明遗址[J]. 科学通报, 2019, 64(1): 107−120.
Yang Wenqing, Sun Liguang, Yang Zhongkang, et al. Nan’ao, an archaeological site of Song dynasty destroyed by tsunami[J]. Chinese Science Bulletin, 2019, 64(1): 107−120.
|
[158] |
Goto K, Hashimoto K, Sugawara D, et al. Spatial thickness variability of the 2011 Tohoku-oki tsunami deposits along the coastline of Sendai Bay[J]. Marine Geology, 2014, 358: 38−48. doi: 10.1016/j.margeo.2013.12.015
|
[159] |
Chagué-Goff C, Szczuciński W, Shinozaki T. Applications of geochemistry in tsunami research: a review[J]. Earth-Science Reviews, 2017, 165: 203−244. doi: 10.1016/j.earscirev.2016.12.003
|
[160] |
Somboonna N, Wilantho A, Jankaew K, et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials[J]. PLoS One, 2014, 9(4): e94236. doi: 10.1371/journal.pone.0094236
|
[161] |
Rubin C M, Horton B P, Sieh K, et al. Highly variable recurrence of tsunamis in the 7400 years before the 2004 Indian Ocean tsunami[J]. Nature Communications, 2017, 8: 16019. doi: 10.1038/ncomms16019
|
[162] |
Rydgren K, Bondevik S. Moss growth patterns and timing of human exposure to a Mesolithic tsunami in the North Atlantic[J]. Geology, 2015, 43(2): 111−114. doi: 10.1130/G36278.1
|
[163] |
Nandasena N A K, Tanaka N, Sasaki Y, et al. Boulder transport by the 2011 Great East Japan tsunami: Comprehensive field observations and whither model predictions?[J]. Marine Geology, 2013, 346: 292−309. doi: 10.1016/j.margeo.2013.09.015
|
[164] |
Liu K B, Fearn M L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records[J]. Quaternary Research, 2000, 54(2): 238−245. doi: 10.1006/qres.2000.2166
|
[165] |
Elsner J B, Jagger T H, Liu K B. Comparison of hurricane return levels using historical and geological records[J]. Journal of Applied Meteorology and Climatology, 2008, 47(2): 368−374. doi: 10.1175/2007JAMC1692.1
|
[166] |
Nott J F, Forsyth A. Punctuated global tropical cyclone activity over the past 5000 years[J]. Geophysical Research Letters, 2012, 39(14): L14703.
|
[167] |
Woodruff J D, Donnelly J P, Mohrig D, et al. Reconstructing relative flooding intensities responsible for hurricane-induced deposits from Laguna Playa Grande, Vieques, Puerto Rico[J]. Geology, 2008, 36(5): 391−394. doi: 10.1130/G24731A.1
|
[168] |
Brandon C M, Woodruff J D, Donnelly J P, et al. How unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding from New York Harbor[J]. Scientific Reports, 2014, 4: 7366.
|
[169] |
Stockdon H F, Holman R A, Howd P A, et al. Empirical parameterization of setup, swash, and runup[J]. Coastal Engineering, 2006, 53(7): 573−588. doi: 10.1016/j.coastaleng.2005.12.005
|
[170] |
Brandon C M, Woodruff J D, Lane D, et al. Tropical cyclone wind speed constraints from resultant storm surge deposition: A 2500 year reconstruction of hurricane activity from St. Marks, FL[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(8): 2993−3008. doi: 10.1002/ggge.20217
|
[171] |
Laigle L, Joseph P, De Marsily G, et al. 3-D process modelling of ancient storm-dominated deposits by an event-based approach: Application to Pleistocene-to-modern Gulf of Lions deposits[J]. Marine Geology, 2013, 335: 177−199. doi: 10.1016/j.margeo.2012.11.007
|
[172] |
Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268−294. doi: 10.1016/j.margeo.2014.03.021
|
[173] |
Huang C S Y, Nakamura N. Local wave activity budgets of the wintertime Northern Hemisphere: Implication for the Pacific and Atlantic storm tracks[J]. Geophysical Research Letters, 2017, 44(11): 5673−5682. doi: 10.1002/2017GL073760
|
[174] |
Stark, J, Smolders S, Meire P, et al. Impact of intertidal area characteristics on estuarine tidal hydrodynamics: a modelling study for the Scheldt Estuary[J]. Estuarine, Coastal and Shelf Science, 2017, 198: 138−155. doi: 10.1016/j.ecss.2017.09.004
|
[175] |
Hu Kelin, Ding Pingxing, Wang Zhengbing, et al. A 2D/3D hydrodynamic and sediment transport model for the Yangtze Estuary, China[J]. Journal of Marine Systems, 2009, 77(1/2): 114−136.
|
[176] |
Hu Kelin, Chen Qin, Wang Hongqing, et al. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy[J]. Coastal Engineering, 2018, 132: 63−81. doi: 10.1016/j.coastaleng.2017.11.001
|
[177] |
Goldenberg S B, Landsea C W, Mestas-Nuñez A M, et al. The recent increase in Atlantic hurricane activity: Causes and implications[J]. Science, 2001, 293(5529): 474−479. doi: 10.1126/science.1060040
|
[178] |
Chan J C L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”[J]. Science, 2006, 311(5768): 1713.
|
[179] |
Elsner J B, Kossin J P, Jagger T H. The increasing intensity of the strongest tropical cyclones[J]. Nature, 2008, 455(7209): 92−95. doi: 10.1038/nature07234
|
[180] |
Sobel A H, Camargo S J, Hall T M, et al. Human influence on tropical cyclone intensity[J]. Science, 2016, 353(6296): 242−246. doi: 10.1126/science.aaf6574
|
[181] |
Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10: 635. doi: 10.1038/s41467-019-08471-z
|
[182] |
Emanuel K A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(30): 12219−12224. doi: 10.1073/pnas.1301293110
|
[183] |
Bacmeister J T, Reed K A, Hannay C, et al. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model[J]. Climatic Change, 2018, 146(3/4): 547−560.
|
[184] |
王宏, 李建芬, 裴艳东, 等. 渤海湾西岸海岸带第四纪地质研究成果概述[J]. 地质调查与研究, 2011, 34(2): 81−97. doi: 10.3969/j.issn.1672-4135.2011.02.001
Wang Hong, Li Jianfen, Pei Yandong, et al. Study of Quaternary geology on the west coast of Bohai Bay[J]. Geological Survey and Research, 2011, 34(2): 81−97. doi: 10.3969/j.issn.1672-4135.2011.02.001
|
[185] |
Chen H F, Liu Y C, Chiang C W, et al. China's historical record when searching for tropical cyclones corresponding to Intertropical Convergence Zone(ITCZ) shifts over the past 2 kyr[J]. Climate of the Past, 2019, 15(1): 279−289. doi: 10.5194/cp-15-279-2019
|
[186] |
Donnelly J P, Hawkes A D, Lane P, et al. Climate forcing of unprecedented intense‐hurricane activity in the last 2000 years[J]. Earth's Future, 2015, 3(2): 49−65. doi: 10.1002/2014EF000274
|
[187] |
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162−165. doi: 10.1038/nature01194
|
[188] |
顾成林, 康建成, 闫国东, 等. 1951–2015年登陆中国热带气旋的时空变化特征及与ENSO的关系[J]. 灾害学, 2018, 33(4): 129−134, 140. doi: 10.3969/j.issn.1000-811X.2018.04.022
Gu Chenglin, Kang Jiancheng, Yan Guodong, et al. Spatial and temporal variations of tropical cyclones landing on China in 1951–2015 and their relationship with ENSO[J]. Journal of Catastrophology, 2018, 33(4): 129−134, 140. doi: 10.3969/j.issn.1000-811X.2018.04.022
|
[189] |
王会军, 范可, 孙建奇, 等. 关于西太平洋台风气候变异和预测的若干研究进展[J]. 大气科学, 2007, 31(6): 1076−1081. doi: 10.3878/j.issn.1006-9895.2007.06.04
Wang Huijun, Fan Ke, Sun Jianqi, et al. Some advances in the researches of the western north Pacific typhoon climate variability and prediction[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6): 1076−1081. doi: 10.3878/j.issn.1006-9895.2007.06.04
|
[190] |
Tu J Y, Chou C, Chu P S. The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific–East Asian climate change[J]. Journal of Climate, 2009, 22(13): 3617−3628. doi: 10.1175/2009JCLI2411.1
|