Citation: | Yuan Baosheng,Zhao Xia,Liu Chenlin, et al. Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress[J]. Haiyang Xuebao,2019, 41(9):80–85,doi:10.3969/ j.issn.0253−4193.2019.09.007 |
[1] |
Asada K. Production and action of active oxygen species in photosynthetic tissues[C]//Foyer C H, Mullineaux P M. Causes of Photooxidative Stress and Amelioration of Defense System in Plants. Boca Raton: CRC Press, 1994: 77–104.
|
[2] |
Quan Lijuan, Zhang Bo, Shi Weiwei, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2−18. doi: 10.1111/j.1744-7909.2007.00599.x
|
[3] |
Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology, 1982, 33: 73−96. doi: 10.1146/annurev.pp.33.060182.000445
|
[4] |
Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83−116. doi: 10.1146/annurev.pp.43.060192.000503
|
[5] |
Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7): 995−1014. doi: 10.1590/S0100-879X2005000700003
|
[6] |
Zamocky M, Furtmüller P G, Obinger C. Evolution of catalases from bacteria to humans[J]. Antioxidants & Redox Signaling, 2008, 10(9): 1527−1548.
|
[7] |
Purev M, Kim Y J, Kim M K, et al. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses[J]. Plant Physiology and Biochemistry, 2010, 48(6): 451−460. doi: 10.1016/j.plaphy.2010.02.005
|
[8] |
Zhou Yong, Liu Shiqiang, Yang Zijian, et al. CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli[J]. Biotechnology & Biotechnological Equipment, 2017, 31(5): 886−896.
|
[9] |
Chiang C M, Chen Shipeng, Chen L F O, et al. Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(3): 266−277. doi: 10.1007/s13562-013-0210-1
|
[10] |
Shao Ning, Beck C F, Lemaire S D, et al. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii[J]. Planta, 2008, 228(6): 1055−1066. doi: 10.1007/s00425-008-0807-0
|
[11] |
Elbaz A, Wei Yuanyuan, Meng Qian, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J]. Ecotoxicology, 2010, 19(7): 1285−1293. doi: 10.1007/s10646-010-0514-z
|
[12] |
Provasoli L. Media and prospects for the cultivation of marine algae[M]//Watanabe A, Hattori A. Cultures and Collections of Algae. Tokyo: Japanese Society of Plant Physiology, 1968.
|
[13] |
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
|
[14] |
Wu Guangting, Liu Chenlin, Liu Shenghao, et al. High-quality RNA preparation for cDNA library construction of the Antarctic sea-ice alga Chlamydomonas sp. ICE-L[J]. Journal of Applied Phycology, 2010, 22(6): 779−783. doi: 10.1007/s10811-010-9519-5
|
[15] |
Liu Chenlin, Wu Guangting, Huang Xiaohang, et al. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation[J]. Extremophiles, 2012, 16(3): 419−425. doi: 10.1007/s00792-012-0441-4
|
[16] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
|
[17] |
Kamigaki A, Mano S, Terauchi K, et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor[J]. Plant Journal, 2003, 33(1): 161−175. doi: 10.1046/j.0960-7412.2003.001605.x
|
[18] |
Liu Chenlin, Huang Xiaohang, Wang Xiuliang, et al. Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics[J]. Phycologia, 2006, 45(2): 190−198. doi: 10.2216/03-88.1
|
[19] |
Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
|
[20] |
Bailly C, Leymarie J, Lehner A, et al. Catalase activity and expression in developing sunflower seeds as related to drying[J]. Journal of Experimental Botany, 2004, 55(396): 475−483. doi: 10.1093/jxb/erh050
|
[21] |
Moreira S F I, Bailão A M, Barbosa M S, et al. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis[J]. Yeast, 2004, 21(2): 173−182. doi: 10.1002/yea.1077
|
[22] |
王升平, 杨金广, 战徊旭, 等. 烟草过氧化氢酶基因CAT1的克隆及表达特征分析[J]. 中国烟草学报, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017
Wang Shengping, Yang Jinguang, Zhan Huixu, et al. Cloning of catalase gene(CAT1) and its expression patterns in Nicotiana tabacum L.[J]. Acta Tabacaria Sinica, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017
|
[23] |
Yong Bin, Wang Xiaoyan, Xu Pan, et al. Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam[J]. BioMed Research International, 2017, 2017: 6847532.
|
[24] |
Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601−639. doi: 10.1146/annurev.arplant.50.1.601
|