Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Yuan Baosheng,Zhao Xia,Liu Chenlin, et al. Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress[J]. Haiyang Xuebao,2019, 41(9):80–85,doi:10.3969/j.issn.0253−4193.2019.09.007
Citation: Yuan Baosheng,Zhao Xia,Liu Chenlin, et al. Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress[J]. Haiyang Xuebao,2019, 41(9):80–85,doi:10.3969/ j.issn.0253−4193.2019.09.007

Response of catalase in Antarctic ice alga Chlamydomonas sp. ICE-L to heat stress

doi: 10.3969/j.issn.0253-4193.2019.09.007
  • Received Date: 2018-11-02
  • Rev Recd Date: 2019-04-09
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • To investigate the heat stress responding strategies of Antarctic ice algae, the characteristics of a catalase gene CiCAT from the transcriptome of Antarctic ice alga Chlamydomonas sp. ICE-L were analyzed. The length of CiCAT is 2 066 bp encoding a catalase of 492 amino acids. In the phylogenetic tree of catalase amino acid sequences, Antarctic ice alga is clustered with green algae. The amino acid sequence identities of CiCAT are about 80.5% and 78.9% to the catalase from Dunaliella salina and Haematococcus lacustris, respectively. The changes of CiCAT gene expression and catalase activity in Antarctic ice alga were also investigated. Under heat stress, both the relative expression state of CiCAT gene and catalase activity changed from up-regulation to down-regulation over time. After heat stress treatment for 24 h, the expression of CiCAT gene was almost unchanged, while the enzyme activity in the heat treatment group was significantly higher than that in the control group. After 72 h's heat stress treatment, both gene expression and enzyme activity reached the highest level. Our preliminary results show that antioxidase system plays an important role in Antarctic ice algae responding to heat stress, which is similar to that in temperate algae and higher plants.
  • loading
  • [1]
    Asada K. Production and action of active oxygen species in photosynthetic tissues[C]//Foyer C H, Mullineaux P M. Causes of Photooxidative Stress and Amelioration of Defense System in Plants. Boca Raton: CRC Press, 1994: 77–104.
    [2]
    Quan Lijuan, Zhang Bo, Shi Weiwei, et al. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network[J]. Journal of Integrative Plant Biology, 2008, 50(1): 2−18. doi: 10.1111/j.1744-7909.2007.00599.x
    [3]
    Elstner E F. Oxygen activation and oxygen toxicity[J]. Annual Review of Plant Physiology, 1982, 33: 73−96. doi: 10.1146/annurev.pp.33.060182.000445
    [4]
    Bowler C, Montagu M V, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43: 83−116. doi: 10.1146/annurev.pp.43.060192.000503
    [5]
    Scandalios J G. Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses[J]. Brazilian Journal of Medical and Biological Research, 2005, 38(7): 995−1014. doi: 10.1590/S0100-879X2005000700003
    [6]
    Zamocky M, Furtmüller P G, Obinger C. Evolution of catalases from bacteria to humans[J]. Antioxidants & Redox Signaling, 2008, 10(9): 1527−1548.
    [7]
    Purev M, Kim Y J, Kim M K, et al. Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses[J]. Plant Physiology and Biochemistry, 2010, 48(6): 451−460. doi: 10.1016/j.plaphy.2010.02.005
    [8]
    Zhou Yong, Liu Shiqiang, Yang Zijian, et al. CsCAT3, a catalase gene from Cucumis sativus, confers resistance to a variety of stresses to Escherichia coli[J]. Biotechnology & Biotechnological Equipment, 2017, 31(5): 886−896.
    [9]
    Chiang C M, Chen Shipeng, Chen L F O, et al. Expression of the broccoli catalase gene (BoCAT) enhances heat tolerance in transgenic Arabidopsis[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(3): 266−277. doi: 10.1007/s13562-013-0210-1
    [10]
    Shao Ning, Beck C F, Lemaire S D, et al. Photosynthetic electron flow affects H2O2 signaling by inactivation of catalase in Chlamydomonas reinhardtii[J]. Planta, 2008, 228(6): 1055−1066. doi: 10.1007/s00425-008-0807-0
    [11]
    Elbaz A, Wei Yuanyuan, Meng Qian, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J]. Ecotoxicology, 2010, 19(7): 1285−1293. doi: 10.1007/s10646-010-0514-z
    [12]
    Provasoli L. Media and prospects for the cultivation of marine algae[M]//Watanabe A, Hattori A. Cultures and Collections of Algae. Tokyo: Japanese Society of Plant Physiology, 1968.
    [13]
    Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870−1874. doi: 10.1093/molbev/msw054
    [14]
    Wu Guangting, Liu Chenlin, Liu Shenghao, et al. High-quality RNA preparation for cDNA library construction of the Antarctic sea-ice alga Chlamydomonas sp. ICE-L[J]. Journal of Applied Phycology, 2010, 22(6): 779−783. doi: 10.1007/s10811-010-9519-5
    [15]
    Liu Chenlin, Wu Guangting, Huang Xiaohang, et al. Validation of housekeeping genes for gene expression studies in an ice alga Chlamydomonas during freezing acclimation[J]. Extremophiles, 2012, 16(3): 419−425. doi: 10.1007/s00792-012-0441-4
    [16]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method[J]. Methods, 2001, 25(4): 402−408. doi: 10.1006/meth.2001.1262
    [17]
    Kamigaki A, Mano S, Terauchi K, et al. Identification of peroxisomal targeting signal of pumpkin catalase and the binding analysis with PTS1 receptor[J]. Plant Journal, 2003, 33(1): 161−175. doi: 10.1046/j.0960-7412.2003.001605.x
    [18]
    Liu Chenlin, Huang Xiaohang, Wang Xiuliang, et al. Phylogenetic studies on two strains of Antarctic ice algae based on morphological and molecular characteristics[J]. Phycologia, 2006, 45(2): 190−198. doi: 10.2216/03-88.1
    [19]
    Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373−399. doi: 10.1146/annurev.arplant.55.031903.141701
    [20]
    Bailly C, Leymarie J, Lehner A, et al. Catalase activity and expression in developing sunflower seeds as related to drying[J]. Journal of Experimental Botany, 2004, 55(396): 475−483. doi: 10.1093/jxb/erh050
    [21]
    Moreira S F I, Bailão A M, Barbosa M S, et al. Monofunctional catalase P of Paracoccidioides brasiliensis: identification, characterization, molecular cloning and expression analysis[J]. Yeast, 2004, 21(2): 173−182. doi: 10.1002/yea.1077
    [22]
    王升平, 杨金广, 战徊旭, 等. 烟草过氧化氢酶基因CAT1的克隆及表达特征分析[J]. 中国烟草学报, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017

    Wang Shengping, Yang Jinguang, Zhan Huixu, et al. Cloning of catalase gene(CAT1) and its expression patterns in Nicotiana tabacum L.[J]. Acta Tabacaria Sinica, 2014, 20(5): 103−109. doi: 10.3969/j.issn.1004-5708.2014.05.017
    [23]
    Yong Bin, Wang Xiaoyan, Xu Pan, et al. Isolation and abiotic stress resistance analyses of a catalase gene from Ipomoea batatas (L.) Lam[J]. BioMed Research International, 2017, 2017: 6847532.
    [24]
    Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601−639. doi: 10.1146/annurev.arplant.50.1.601
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views (396) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return