Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Song Lehui,Han Xibin,Li Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses[J]. Haiyang Xuebao,2019, 41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005
Citation: Song Lehui,Han Xibin,Li Jiabiao, et al. Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses[J]. Haiyang Xuebao,2019, 41(9):52–64,doi:10.3969/j.issn.0253−4193.2019.09.005

Western Ross Sea sedimentary environment reconstruction since the Last Glacial Maximum based on organic carbon and biomarker analyses

doi: 10.3969/j.issn.0253-4193.2019.09.005
  • Received Date: 2018-11-12
  • Rev Recd Date: 2019-03-30
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • Analyses of grain size, organic carbon and biomarker have been carried out for the core ANT32-RB16C, in order to identify the source of organic matter and reconstruct the sedimentary environment since the Last Glacial Maximum in the western Ross Sea. From the bottom to the top within the core, sub-ice-shelf, pre-ice-shelf and open-marine sedimentary environments can be differentiated. The combined parameters of biomarker indicate that organic matter is mainly a mixed input of terrigenous and marine origin. During the Last Glacial Maximum (24.8–20 ka BP), under the influence of ice sheet and the current condition, the organic matter content was low and its source was associated mainly with a marine origin, with a relatively low plankton productivity. During the Last Deglaciation (20–11.7 ka BP), the organic matter released by the dissolution of the glaciers in the retreat process of the Ross Ice Shelf, caused the increase of terrestrial organic matter. During the Holocene, the content of organic matter increased significantly, together with the proportion of marine origin input. The number of prokaryotes such as bacteria increased, resulting in a greater degree of degradation of short-chain n-alkanes. The redox condition in the study area is mainly affected by the ice shelf and sea ice limitation, and has little relationship with the organic matter content and the high-oxygen Antarctic Bottom Water. In general, from the Last Glacial Maximum to the Last Deglaciation, the study area sedimentary environment was affected by the Ross Ice Shelf, and by the climate since the Holocene.
  • loading
  • [1]
    Iii T W, Orsi A H. Antarctic Bottom Water production and export by tides in the Ross Sea[J]. Geophysical Research Letters, 2006, 33(12): 285−293.
    [2]
    Budillon G, Castagno P, Aliani S, et al. Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58(10): 1002−1018. doi: 10.1016/j.dsr.2011.07.002
    [3]
    Denton G H, Bockheim J G, Wilson S C, et al. Late wisconsin and early Holocene glacial history, inner Ross Embayment, Antarctica[J]. Quaternary Research, 1989, 31(2): 151−182. doi: 10.1016/0033-5894(89)90004-5
    [4]
    Ship S, Anderson J, Domack E. Late Pleistocene-Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 1-Geophysical results[J]. Geological Society of America Bulletin, 1999, 111(10): 1486−1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2
    [5]
    Anderson J B, Shipp S S, Lowe A L, et al. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review[J]. Quaternary Science Reviews, 2002, 21(1): 49−70.
    [6]
    Licht K J Dunbar N W, Andrews J T, et al. Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: Implications for a last glacial maximum grounding line[J]. Geological Society of America Bulletin, 1999, 111(1): 91−103. doi: 10.1130/0016-7606(1999)111<0091:DSTAGM>2.3.CO;2
    [7]
    Salvi C, Busetti M, Marinoni L, et al. Late Quaternary glacial marine to marine sedimentation in the Pennell Trough (Ross Sea, Antarctica)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2006, 231(1): 199−214.
    [8]
    黄梦雪, 王汝建, 肖文申, 等. 罗斯海西北陆架(JOIDES海槽)末次冰期以来冰架消融过程及水动力变化[J]. 海洋地质与第四纪地质, 2016, 36(5): 97−108.

    Huang Mengxue, Wang Rujian, Xiao Wenshen, et al. Retreat process of Ross Ice Shelf and hydrodynamic changes on northwestern Ross continental shelf since the last glacial[J]. Marine Geology & Quaternary Geology, 2016, 36(5): 97−108.
    [9]
    Müller A, Voss M. The palaeoenvironments of coastal lagoons in the southern Baltic Sea, II. δ13C and δ15N ratios of organic matter-sources and sediments[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 145(1/3): 17−32.
    [10]
    Meyers P A, Lallier-Vergés E. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345−372. doi: 10.1023/A:1008073732192
    [11]
    傅家谟, 盛国英. 分子有机地球化学与古气候、古环境研究[J]. 第四纪研究, 1992, 12(4): 306−320. doi: 10.3321/j.issn:1001-7410.1992.04.003

    Fu Jiamo, Sheng Guoying. Molecular organic geochemistry and its application to the study of paleoclimate and paleoenvironments[J]. Quaternary Sciences, 1992, 12(4): 306−320. doi: 10.3321/j.issn:1001-7410.1992.04.003
    [12]
    Poynter J, Eglinton G. The biomarker concept-strengths and weaknesses[J]. Fresenius Journal of Analytical Chemistry, 1991, 339(10): 725−731. doi: 10.1007/BF00321733
    [13]
    Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261−289. doi: 10.1016/S0146-6380(02)00168-7
    [14]
    Matsumoto G I, Akiyama M, Watanuki K, et al. Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil[J]. Organic Geochemistry, 1990, 15(4): 403−412. doi: 10.1016/0146-6380(90)90167-X
    [15]
    汪建君, 孙立广, 胡建芳, 等. 南极阿德雷岛企鹅粪土沉积物分子地球化学特征[J]. 极地研究, 2006, 18(4): 245−253.

    Wang Jianjun, Sun Liguang, Hu Jianfang, et al. Organic geochemistry of penguin ornithogenic sediment from Ardley Island, West Antarctica[J]. Chinese Journal of Polar Research, 2006, 18(4): 245−253.
    [16]
    于培松, 张海生, 扈传昱, 等. 南极普里兹湾沉积生物标志物记录及浮游植物群落结构变化[J]. 极地研究, 2012, 24(2): 143−150.

    Yu Peisong, Zhang Haisheng, Hu Chuanyu, et al. Using biomarkers in sediments as indicators to rebuild the phytoplankton community in Prydz Bay, Antarctica[J]. Chinese Journal of Polar Research, 2012, 24(2): 143−150.
    [17]
    Wisnieski E, Bícego M C, Montone R C, et al. Characterization of sources and temporal variation in the organic matter input indicated by n-alkanols and sterols in sediment cores from Admiralty Bay, King George Island, Antarctica[J]. Polar Biology, 2014, 37(4): 483−496. doi: 10.1007/s00300-014-1445-6
    [18]
    Members W D P. Precise interpolar phasing of abrupt climate change during the last ice age[J]. Nature, 2015, 520(7549): 661. doi: 10.1038/nature14401
    [19]
    赵仁杰, 陈志华, 刘合林, 等. 15 ka以来罗斯海陆架岩心沉积学记录及古海洋学意义[J]. 海洋学报, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008

    Zhao Renjie, Chen Zhihua, Liu Helin, et al. Sedimentary record and paleoceanographic implications of the core on the continental shelf off the Ross Sea since 15 ka[J]. Haiyang Xuebao, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
    [20]
    Nishimura A, Nakasone I T, Hiramatsu C, et al. Late Quaternary paleoenvirontnent of the Ross Sea continental shelf, Antarctica[J]. Annals of Glaciology, 1998, 27: 275−280. doi: 10.3189/1998AoG27-1-275-280
    [21]
    聂亚光. 南极罗斯海地区粪土沉积物的元素同位素地球化学与企鹅古生态研究[D]. 合肥: 中国科学技术大学, 2014.

    Nie Yaguang. Geochemical and paleo-ecological research on ornithogenic sediments from the Ross Sea region[D]. Hefei: University of Science and Technology of China, 2014.
    [22]
    Orsi A H, Wiederwohl C L. A recount of Ross Sea waters[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56(13/14): 778−795.
    [23]
    Basak C, Pahnke K, Frank M, et al. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific[J]. Earth and Planetary Science Letters, 2015, 419: 211−221. doi: 10.1016/j.jpgl.2015.03.011
    [24]
    Foldvik A, Gammelsrød T. Notes on Southern Ocean hydrography, sea-ice and bottom water formation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1988, 67(1): 3−17.
    [25]
    Yokoyama Y, Anderson J B, Yamane M, et al. Widespread collapse of the Ross Ice Shelf during the late Holocene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2354−2359. doi: 10.1073/pnas.1516908113
    [26]
    Dinniman M S, Klinck J M, Smith Jr W O. A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(13/16): 1508−1523.
    [27]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋沉积物中放射性核素的测定γ能谱法: GB/T 30738-2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Determination of radionuclide in marine sediment Gamma spectrometry: GB/T 30738-2014[S]. Beijing: China Standards Press, 2014.
    [28]
    Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process[J]. Bayesian Analysis, 2011, 6(6): 457−474.
    [29]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [30]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋调查规范第8部分: 海洋地质地球物理调查: GB/T 12763.8-2007[S]. 北京: 中国标准出版社, 2007.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Specifications for oceanographic survey Part 8: Marine geology and geophysics survey: GB/T 12763.8-2007[S]. Beijing: China Standards Press, 2007.
    [31]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地质样品有机地球化学分析方法第2部分: 有机质稳定碳同位素测定同位素质谱法: GB/T 18340.2-2010[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. Organic geochemical chemical analysis method for geological samples Part 2: Determination of organic carbon stable isotopic component isotopic mass spectrometry: GB/T 18340.2-2010[S]. Beijing: China Standards Press, 2010.
    [32]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气相色谱–质谱法测定沉积物和原油中生物标志物: GB/T 18606-2001[S]. 北京: 中国标准出版社, 2001.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration. The standard test method for biomarker in sediment and crude oil by GC-MS: GB/T 18606-2001[S]. Beijing: China Standards Press, 2001.
    [33]
    Frignani M, Giglio F, Langone L, et al. Late Pleistocene-Holocene sedimentary fluxes of organic carbon and biogenic silica in the northwestern Ross Sea, Antarctica[J]. Annals of Glaciology, 1998, 27: 697−703. doi: 10.3189/1998AoG27-1-697-703
    [34]
    Blumer M, Guillard R R L, Chase T. Hydrocarbons of marine phytoplankton[J]. Marine Biology, 1971, 8(3): 183−189. doi: 10.1007/BF00355214
    [35]
    Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments–II[J]. Organic Geochemistry, 1987, 11(6): 513−527. doi: 10.1016/0146-6380(87)90007-6
    [36]
    卢鸿, 孙永革, 彭平安. 单甲基支链烷烃的单体碳同位素研究[J]. 沉积学报, 2003, 21(2): 360−365. doi: 10.3969/j.issn.1000-0550.2003.02.028

    Lu Hong, Sun Yongge, Peng Ping’an. Molecular stable carbon isotopic compositions of mono-methyl branched alkanes[J]. Acta Sedimentologica Sinica, 2003, 21(2): 360−365. doi: 10.3969/j.issn.1000-0550.2003.02.028
    [37]
    Kuhn T K, Krull E S, Bowater A, et al. The occurrence of short chain-alkanes with an even over odd predominance in higher plants and soils[J]. Organic Geochemistry, 2010, 41(2): 88−952008. doi: 10.1016/j.orggeochem.2009.08.003
    [38]
    郑邦, 周斌, 王可, 等. 晚全新世东海泥质区物源输入、源区植被变化及其影响因素:来自MD06-3039A孔的正构烷烃记录[J]. 第四纪研究, 2018, 38(5): 1293−1303. doi: 10.11928/j.issn.1001-7410.2018.05.21

    Zheng Bang, Zhou Bin, Wang Ke, et al. Changes of provenance input and source vegetation changes and their impact factors since late Holocene based on N-alkanes records from core MD06-3039A in the muddy area of the East China Sea[J]. Quaternary Sciences, 2018, 38(5): 1293−1303. doi: 10.11928/j.issn.1001-7410.2018.05.21
    [39]
    Ourisson G, Rohmer M, Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates[J]. Annual Review of Microbiology, 1987, 41: 301−333. doi: 10.1146/annurev.mi.41.100187.001505
    [40]
    Smith A B, Littlewood D T J. Paleontological data and molecular phylogenetic analysis[J]. Paleobiology, 1994, 20(3): 259−273. doi: 10.1017/S009483730001277X
    [41]
    许玩宏, 张忠英, 沈平, 等. 贵州三都早奥陶世同高组下燕高页岩段的生物标志化合物[J]. 沉积学报, 1997, 15(3): 72−77.

    Xu Wanhong, Zhang Zhongying, Shen Ping, et al. Biomarkers from the Xiayangao member of the early ordovician Tonggao formation in the Sandu area, Guizhou Province[J]. Acta Sedimentologica Sinica, 1997, 15(3): 72−77.
    [42]
    卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 174-199.

    Lu Shuangfang, Zhang Min. Geochemistry of Oil and Gas[M]. Beijing: Petroleum Industry Press, 2008: 174-199.
    [43]
    Anderson J B, Conway H, Bart P J, et al. Ross Sea paleo-ice sheet drainage and deglacial history during and since the LGM[J]. Quaternary Science Reviews, 2014, 100(17): 31−54.
    [44]
    Halberstadt A R W, Simkins L M, Greenwood S L, et al. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica[J]. The Cryosphere, 2016, 10(3): 1−36.
    [45]
    Domack E W, Jacobson E A, Shipp S, et al. Late Pleistocene–Holocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2—sedimentologic and stratigraphic signature[J]. Geological Society of America Bulletin, 1999, 111(10): 1517−1536. doi: 10.1130/0016-7606(1999)111<1517:LPHROT>2.3.CO;2
    [46]
    史久新. 南极冰架-海洋相互作用研究综述[J]. 极地研究, 2018, 30(3): 287−302.

    Shi Jiuxin. A review of ice shelf-ocean interaction in Antarctica[J]. Chinese Journal of Polar Research, 2018, 30(3): 287−302.
    [47]
    Conway H, Hall B L, Denton G H, et al. Past and future grounding-line retreat of the West Antarctic Ice Sheet[J]. Science, 1999, 286(5438): 280−283. doi: 10.1126/science.286.5438.280
    [48]
    Meyers P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J]. Organic Geochemistry, 1997, 27(5/6): 213−250.
    [49]
    王绍武, 黄建斌, 闻新宇. 古气候的启示[J]. 气象, 2012, 38(3): 257−265. doi: 10.3969/j.issn.1674-7097.2012.03.001

    Wang Shaowu, Huang Jianbin, Wen Xinyu. Implications of paleoclimate[J]. Meteorological Monthly, 2012, 38(3): 257−265. doi: 10.3969/j.issn.1674-7097.2012.03.001
    [50]
    吴文祥, 葛全胜. 全新世气候事件及其对古文化发展的影响[J]. 华夏考古, 2005, 21(3): 60−67. doi: 10.3969/j.issn.1001-9928.2005.03.007

    Wu Wenxiang, Ge Quansheng. Climate events of the recent epoch and their influence upon the development of ancient culture[J]. Huaxia Archaeology, 2005, 21(3): 60−67. doi: 10.3969/j.issn.1001-9928.2005.03.007
    [51]
    Kukla G, Heller F, Liu X M, et al. Pleistocene climates in China dated by magnetic susceptibility[J]. Geology, 1988, 16(9): 811. doi: 10.1130/0091-7613(1988)016<0811:PCICDB>2.3.CO;2
    [52]
    Weiss H, Courty M A, Wetterstrom W, et al. The genesis and collapse of third millennium north mesopotamian civilization[J]. Science, 1993, 261(5124): 995−1004. doi: 10.1126/science.261.5124.995
    [53]
    吴文祥, 刘东生. 4000a.B.P.前后降温事件与中华文明的诞生[J]. 第四纪研究, 2001, 21(5): 443−451. doi: 10.3321/j.issn:1001-7410.2001.05.008

    Wu Wenxiang, Liu Dongsheng. 4000a.B.P. event and its implications for the origin of ancient Chinese civilization[J]. Quaternary Scienses, 2001, 21(5): 443−451. doi: 10.3321/j.issn:1001-7410.2001.05.008
    [54]
    葛倩, 刘敬圃, 初凤友, 等. 全新世事件3与古文化变迁[J]. 地质科技情报, 2010, 29(3): 15−22. doi: 10.3969/j.issn.1000-7849.2010.03.003

    Ge Qian, Liu Jingpu, Chu Fengyou, et al. Holocene Event 3 and ancient cultural transition[J]. Geological Science and Technology Information, 2010, 29(3): 15−22. doi: 10.3969/j.issn.1000-7849.2010.03.003
    [55]
    Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in north Atlantic Holocene and Glacial climates[J]. Science, 1997, 278(5341): 1257−1266. doi: 10.1126/science.278.5341.1257
    [56]
    田家康. 气候文明史[M]. 范春飚, 译. 北京: 东方出版社, 2012: 84-186.

    Tian Jiakang. History of Climate and Civilization[M]. Fan Chunbiao, trans. Beijing: Oriental Press, 2012: 84-186.
    [57]
    Calvert S E. Oceanographic controls on the accumulation of organic matter in marine sediments[J]. Geological Society of London Special Publications, 1987, 26(1): 137−151. doi: 10.1144/GSL.SP.1987.026.01.08
    [58]
    Jaccard S L, Galbraith E D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation[J]. Nature Geoscience, 2011(5): 151−156.
    [59]
    ten Haven H L, de Leeuw J W, Rullkötter J, et al. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator[J]. Nature, 1987, 330(6149): 641−643. doi: 10.1038/330641a0
    [60]
    Putnam A E, Denton G H, Schaefer J M, et al. Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal[J]. Nature Geoscience, 2010, 3(10): 700−704. doi: 10.1038/ngeo962
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (508) PDF downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return