Citation: | Ju Mengshan,Chen Zhihua,Zhao Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica[J]. Haiyang Xuebao,2019, 41(9):40–51,doi:10.3969/j.issn. 0253−4193.2019.09.004 |
[1] |
Smith J A, Hillenbrand C D, Kuhn G, et al. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment[J]. Quaternary Science Reviews, 2010, 30(5): 488−505.
|
[2] |
王亚凤, 温家洪, 刘吉英. 南极冰盖与冰川的快速变化[J]. 极地研究, 2006, 18(1): 63−74.
Wang Yafeng, Wen Jiahong, Liu Jiying. Rapid changes of the Antarctic ice sheet and glaciers[J]. Chinese Journal of Polar Research, 2006, 18(1): 63−74.
|
[3] |
Pritchard H D, Ligtenberg S R M, Fricker H A, et al. Antarctic ice-sheet loss driven by basal melting of ice shelves[J]. Nature, 2012, 484(7395): 502−505. doi: 10.1038/nature10968
|
[4] |
Paolo F S, Fricker H A, Padman L. Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6232): 327−331. doi: 10.1126/science.aaa0940
|
[5] |
Jenkins A, Shoosmith D, Dutrieux P, et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability[J]. Nature Geoscience, 2018, 11: 733−738. doi: 10.1038/s41561-018-0207-4
|
[6] |
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429−436. doi: 10.1038/20859
|
[7] |
Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007, 317(5839): 793−796. doi: 10.1126/science.1141038
|
[8] |
Wilson D J, Bertram R A, Needham E F, et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials[J]. Nature, 2018, 561(7723): 383−386. doi: 10.1038/s41586-018-0501-8
|
[9] |
Larter R D, Anderson J B, Graham A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 55−86. doi: 10.1016/j.quascirev.2013.10.016
|
[10] |
Hillenbrand C D, Smith J A, Hodell D A, et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions[J]. Nature, 2017, 547(7661): 43−48. doi: 10.1038/nature22995
|
[11] |
Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic ice sheet[J]. Science, 1998, 281(5373): 82−85. doi: 10.1126/science.281.5373.82
|
[12] |
Hillenbrand C D, Fütterer D K, Grobe H, et al. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea[J]. Geo-Marine Letters, 2002, 22(2): 51−59. doi: 10.1007/s00367-002-0097-7
|
[13] |
Hillenbrand C D, Kuhn G, Frederichs T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13): 1147−1159.
|
[14] |
Vaughan D G. West Antarctic Ice Sheet collapse–the fall and rise of a paradigm[J]. Climatic Change, 2008, 91(1/2): 65−79.
|
[15] |
Nitsche F O, Jacobs S S, Larter R D, et al. Bathymetry of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10): 1−10.
|
[16] |
Arneborg L, Wåhlin A K, Björk G, et al. Persistent inflow of warm water onto the central Amundsen shelf[J]. Nature Geoscience, 2012, 5(12): 876−880. doi: 10.1038/ngeo1644
|
[17] |
Martinson D G. Antarctic circumpolar current's role in the Antarctic ice system: An overview[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336: 71−74. doi: 10.1016/j.palaeo.2011.04.007
|
[18] |
Stlaurent P, Yager P L, Sherrell R M, et al. Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica)[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7135−7162. doi: 10.1002/2017JC013162
|
[19] |
Dotto T S, Alberto N G, Sheldon B, et al. Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry[J]. Geophysical Research Letters, 2018, 45(12): 6195−6201.
|
[20] |
Orsi A H, Whitworth T, Nowlin W D. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
|
[21] |
Comiso J C, Cavalieri D J, Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2): 243−252.
|
[22] |
Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1989, 36(9): 1415−1426. doi: 10.1016/0198-0149(89)90092-7
|
[23] |
Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215−230. doi: 10.1017/S0033822200013904
|
[24] |
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
|
[25] |
Berkman P A, Forman S L. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean[J]. Geophysical Research Letters, 1996, 23(4): 363−366. doi: 10.1029/96GL00151
|
[26] |
Hillenbrand C D, Grobe H, Diekmann B, et al. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) – Relation to modern environmental conditions[J]. Marine Geology, 2003, 193(3): 253−271.
|
[27] |
Parkinson C L. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986[J]. Journal of Geophysical Research Oceans, 1994, 99(C8): 16327−16339. doi: 10.1029/94JC01146
|
[28] |
van der Plicht, J Beck, J W Bard, et al. NOTCAL04—comparison/calibration 14C records 26–50 ka cal BP[J]. Radiocarbon, 2004, 46: 1225−1238. doi: 10.1017/S0033822200033117
|
[29] |
Chiu T C, Fairbanks R G, Mortlock R A, et al. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals[J]. Quaternary Science Reviews, 2005, 24(16): 1797−1808.
|
[30] |
Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24(16): 1781−1796.
|
[31] |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1−17.
|
[32] |
刘合林, 陈志华, 葛淑兰, 等. 晚第四纪普里兹湾北部陆坡岩心沉积学记录及古海洋学意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 209−217.
Liu Helin, Chen Zhihua, Ge Shulan, et al. Late Quaternary sedimentary records and paleoceanographic implications from the core on continental slope off the Prydz Bay, East Antarctic[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 209−217.
|
[33] |
赵仁杰, 陈志华, 刘合林, 等. 15 ka以来罗斯海陆架岩心沉积学记录及古海洋学意义[J]. 海洋学报, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
Zhao Renjie, Chen Zhihua, Liu Helin, et al. Sedimentary record and paleoceanographic implications of the core on the continental shelf off the Ross Sea since 15 ka[J]. Haiyang Xuebao, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
|
[34] |
Witus A E, Branecky C M, Anderson J B, et al. Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica[J]. Quaternary Science Reviews, 2014, 85(2): 99−118.
|
[35] |
McCave I N, Manighetti B, Robinson S G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3): 593−610. doi: 10.1029/94PA03039
|
[36] |
Mccave I N, Hall I R. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): 1−38.
|
[37] |
Denis D, Crosta X, Schmidt S, et al. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica[J]. Quaternary Science Reviews, 2009, 28(13): 1291−1303.
|
[38] |
Noormets R, Dowdeswell J A, Larter R D, et al. Morphology of the upper continental slope in the Bellingshausen and Amundsen Seas – Implications for sedimentary processes at the shelf edge of West Antarctica[J]. Marine Geology, 2009, 258(1/4): 100−114.
|
[39] |
Anderson J B, Shipp S S. The West Antarctic ice sheet: behavior and environment[J]. Antarctic Research Series, 2001, 77: 45−57.
|
[40] |
Dowdeswell J A, Evans J, O Cofaigh C, et al. Morphology and sedimentary processes on the continental slope off Pine Island Bay, Amundsen Sea, West Antarctica[J]. Geological Society of America Bulletin, 2006, 118(5/6): 606−619.
|
[41] |
Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6244): 153−164.
|
[42] |
Voosen P. Antarctic ice melt 125,000 years ago offers warning[J]. Science, 2018, 361(6421): 1339−1339.
|
[43] |
Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3): 195−211.
|
[44] |
Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163−181. doi: 10.1029/92PA00181
|
[45] |
Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
|
[46] |
Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869−3878. doi: 10.1016/0016-7037(96)00236-0
|
[47] |
Anderson R F, Chase Z, Fleisher M Q, et al. The Southern Ocean's biological pump during the last glacial maximum[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1909−1938.
|
[48] |
Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083): 491−496. doi: 10.1038/nature04614
|
[49] |
武力, 王汝建, 肖文申, 等. 东南极普里兹湾陆坡扇晚第四纪高分辨率地层年龄模式[J]. 海洋地质与第四纪地质, 2015, 35(3): 197−208.
Wu Li, Wang Rujian, Xiao Wenshen, et al. High resolution age model of late Quaternary mouth fan at Prydz Trough, Eastern Antarctica[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 197−208.
|