Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Ju Mengshan,Chen Zhihua,Zhao Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica[J]. Haiyang Xuebao,2019, 41(9):40–51,doi:10.3969/j.issn.0253−4193.2019.09.004
Citation: Ju Mengshan,Chen Zhihua,Zhao Renjie, et al. Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica[J]. Haiyang Xuebao,2019, 41(9):40–51,doi:10.3969/j.issn. 0253−4193.2019.09.004

Late Quaternary cyclic variations of ice sheet and paleoproductivity in the Amundsen Sea sector, Antarctica

doi: 10.3969/j.issn.0253-4193.2019.09.004
  • Received Date: 2019-01-07
  • Rev Recd Date: 2019-02-28
  • Available Online: 2021-04-21
  • Publish Date: 2019-09-25
  • Core AMS01 dredged on the northwestern continental rise of the Amundsen Sea was used to reconstruct the history of ice sheet and paleoproductivity since MIS9 (about 34 ka BP) based on the analyses of color reflectance, grain size and geochemical proxies. The results show that: (1) Grain size and paleoproductivity proxies of the core exhibits evident glacial–interglacial cycles of Quaternary; (2) The interglacials such as MIS9, MIS7 and MIS5 have low sedimentation rates, brown sediments, low ice-rafted detritus (IRD) contents and high paleoproductivity, indicating warm climate, limited sea ice and large-scale retreat of the ice sheet in the Amundsen Sea sector; (3) Glacial ages such as MIS8c, MIS8a, MIS6 and MIS2 have relatively high sedimentation rates, gray sediments, high IRD and low biological components, which indicate the ice sheet expanded greatly to the edge of the continental shelf, and the continental rise became a proximal environment close to the grounded ice sheet and/or floating ice shelf with dense sea ice and icebergs, and significantly lowered marine productivity; (4) In the glacials and interglacials, ice sheet and paleoproductivity also have certain fluctuations, especially in MIS8b interstadial, the light brown sediments with low IRD and elevated marine productivity make it be like the environment of interglacial period, which indicates that the ice sheet and ocean in the Amundsen Sea sector are more sensitive to climate change than those in the East Antarctica.
  • [1]
    Smith J A, Hillenbrand C D, Kuhn G, et al. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen Sea Embayment[J]. Quaternary Science Reviews, 2010, 30(5): 488−505.
    [2]
    王亚凤, 温家洪, 刘吉英. 南极冰盖与冰川的快速变化[J]. 极地研究, 2006, 18(1): 63−74.

    Wang Yafeng, Wen Jiahong, Liu Jiying. Rapid changes of the Antarctic ice sheet and glaciers[J]. Chinese Journal of Polar Research, 2006, 18(1): 63−74.
    [3]
    Pritchard H D, Ligtenberg S R M, Fricker H A, et al. Antarctic ice-sheet loss driven by basal melting of ice shelves[J]. Nature, 2012, 484(7395): 502−505. doi: 10.1038/nature10968
    [4]
    Paolo F S, Fricker H A, Padman L. Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6232): 327−331. doi: 10.1126/science.aaa0940
    [5]
    Jenkins A, Shoosmith D, Dutrieux P, et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability[J]. Nature Geoscience, 2018, 11: 733−738. doi: 10.1038/s41561-018-0207-4
    [6]
    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429−436. doi: 10.1038/20859
    [7]
    Jouzel J, Masson-Delmotte V, Cattani O, et al. Orbital and millennial Antarctic climate variability over the past 800,000 years[J]. Science, 2007, 317(5839): 793−796. doi: 10.1126/science.1141038
    [8]
    Wilson D J, Bertram R A, Needham E F, et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials[J]. Nature, 2018, 561(7723): 383−386. doi: 10.1038/s41586-018-0501-8
    [9]
    Larter R D, Anderson J B, Graham A G C, et al. Reconstruction of changes in the Amundsen Sea and Bellingshausen Sea sector of the West Antarctic Ice Sheet since the Last Glacial Maximum[J]. Quaternary Science Reviews, 2014, 100: 55−86. doi: 10.1016/j.quascirev.2013.10.016
    [10]
    Hillenbrand C D, Smith J A, Hodell D A, et al. West Antarctic Ice Sheet retreat driven by Holocene warm water incursions[J]. Nature, 2017, 547(7661): 43−48. doi: 10.1038/nature22995
    [11]
    Scherer R P, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic ice sheet[J]. Science, 1998, 281(5373): 82−85. doi: 10.1126/science.281.5373.82
    [12]
    Hillenbrand C D, Fütterer D K, Grobe H, et al. No evidence for a Pleistocene collapse of the West Antarctic Ice Sheet from continental margin sediments recovered in the Amundsen Sea[J]. Geo-Marine Letters, 2002, 22(2): 51−59. doi: 10.1007/s00367-002-0097-7
    [13]
    Hillenbrand C D, Kuhn G, Frederichs T. Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: an indicator for ice-sheet collapse?[J]. Quaternary Science Reviews, 2009, 28(13): 1147−1159.
    [14]
    Vaughan D G. West Antarctic Ice Sheet collapse–the fall and rise of a paradigm[J]. Climatic Change, 2008, 91(1/2): 65−79.
    [15]
    Nitsche F O, Jacobs S S, Larter R D, et al. Bathymetry of the Amundsen Sea continental shelf: Implications for geology, oceanography, and glaciology[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10): 1−10.
    [16]
    Arneborg L, Wåhlin A K, Björk G, et al. Persistent inflow of warm water onto the central Amundsen shelf[J]. Nature Geoscience, 2012, 5(12): 876−880. doi: 10.1038/ngeo1644
    [17]
    Martinson D G. Antarctic circumpolar current's role in the Antarctic ice system: An overview[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 335-336: 71−74. doi: 10.1016/j.palaeo.2011.04.007
    [18]
    Stlaurent P, Yager P L, Sherrell R M, et al. Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica)[J]. Journal of Geophysical Research: Oceans, 2017, 122(9): 7135−7162. doi: 10.1002/2017JC013162
    [19]
    Dotto T S, Alberto N G, Sheldon B, et al. Variability of the Ross Gyre, Southern Ocean: drivers and responses revealed by satellite altimetry[J]. Geophysical Research Letters, 2018, 45(12): 6195−6201.
    [20]
    Orsi A H, Whitworth T, Nowlin W D. On the Meridional Extent and Fronts of the Antarctic Circumpolar Current[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42(5): 641−673. doi: 10.1016/0967-0637(95)00021-W
    [21]
    Comiso J C, Cavalieri D J, Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003, 41(2): 243−252.
    [22]
    Mortlock R A, Froelich P N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep-Sea Research Part A: Oceanographic Research Papers, 1989, 36(9): 1415−1426. doi: 10.1016/0198-0149(89)90092-7
    [23]
    Stuiver M, Reimer P J. Extended 14C data base and revised CALIB 3.0 14C age calibration program[J]. Radiocarbon, 1993, 35(1): 215−230. doi: 10.1017/S0033822200013904
    [24]
    Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [25]
    Berkman P A, Forman S L. Pre-bomb radiocarbon and the reservoir correction for calcareous marine species in the Southern Ocean[J]. Geophysical Research Letters, 1996, 23(4): 363−366. doi: 10.1029/96GL00151
    [26]
    Hillenbrand C D, Grobe H, Diekmann B, et al. Distribution of clay minerals and proxies for productivity in surface sediments of the Bellingshausen and Amundsen seas (West Antarctica) – Relation to modern environmental conditions[J]. Marine Geology, 2003, 193(3): 253−271.
    [27]
    Parkinson C L. Spatial patterns in the length of the sea ice season in the Southern Ocean, 1979-1986[J]. Journal of Geophysical Research Oceans, 1994, 99(C8): 16327−16339. doi: 10.1029/94JC01146
    [28]
    van der Plicht, J Beck, J W Bard, et al. NOTCAL04—comparison/calibration 14C records 26–50 ka cal BP[J]. Radiocarbon, 2004, 46: 1225−1238. doi: 10.1017/S0033822200033117
    [29]
    Chiu T C, Fairbanks R G, Mortlock R A, et al. Extending the radiocarbon calibration beyond 26,000 years before present using fossil corals[J]. Quaternary Science Reviews, 2005, 24(16): 1797−1808.
    [30]
    Fairbanks R G, Mortlock R A, Chiu T C, et al. Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230Th/234U/238U and 14C dates on pristine corals[J]. Quaternary Science Reviews, 2005, 24(16): 1781−1796.
    [31]
    Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1): 1−17.
    [32]
    刘合林, 陈志华, 葛淑兰, 等. 晚第四纪普里兹湾北部陆坡岩心沉积学记录及古海洋学意义[J]. 海洋地质与第四纪地质, 2015, 35(3): 209−217.

    Liu Helin, Chen Zhihua, Ge Shulan, et al. Late Quaternary sedimentary records and paleoceanographic implications from the core on continental slope off the Prydz Bay, East Antarctic[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 209−217.
    [33]
    赵仁杰, 陈志华, 刘合林, 等. 15 ka以来罗斯海陆架岩心沉积学记录及古海洋学意义[J]. 海洋学报, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008

    Zhao Renjie, Chen Zhihua, Liu Helin, et al. Sedimentary record and paleoceanographic implications of the core on the continental shelf off the Ross Sea since 15 ka[J]. Haiyang Xuebao, 2017, 39(5): 78−88. doi: 10.3969/j.issn.0253-4193.2017.05.008
    [34]
    Witus A E, Branecky C M, Anderson J B, et al. Meltwater intensive glacial retreat in polar environments and investigation of associated sediments: example from Pine Island Bay, West Antarctica[J]. Quaternary Science Reviews, 2014, 85(2): 99−118.
    [35]
    McCave I N, Manighetti B, Robinson S G. Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography[J]. Paleoceanography, 1995, 10(3): 593−610. doi: 10.1029/94PA03039
    [36]
    Mccave I N, Hall I R. Size sorting in marine muds: Processes, pitfalls, and prospects for paleoflow-speed proxies[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(10): 1−38.
    [37]
    Denis D, Crosta X, Schmidt S, et al. Holocene glacier and deep water dynamics, Adélie Land region, East Antarctica[J]. Quaternary Science Reviews, 2009, 28(13): 1291−1303.
    [38]
    Noormets R, Dowdeswell J A, Larter R D, et al. Morphology of the upper continental slope in the Bellingshausen and Amundsen Seas – Implications for sedimentary processes at the shelf edge of West Antarctica[J]. Marine Geology, 2009, 258(1/4): 100−114.
    [39]
    Anderson J B, Shipp S S. The West Antarctic ice sheet: behavior and environment[J]. Antarctic Research Series, 2001, 77: 45−57.
    [40]
    Dowdeswell J A, Evans J, O Cofaigh C, et al. Morphology and sedimentary processes on the continental slope off Pine Island Bay, Amundsen Sea, West Antarctica[J]. Geological Society of America Bulletin, 2006, 118(5/6): 606−619.
    [41]
    Dutton A, Carlson A E, Long A J, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6244): 153−164.
    [42]
    Voosen P. Antarctic ice melt 125,000 years ago offers warning[J]. Science, 2018, 361(6421): 1339−1339.
    [43]
    Bonn W J, Gingele F X, Grobe H, et al. Palaeoproductivity at the Antarctic continental margin: opal and barium records for the last 400 ka[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1998, 139(3): 195−211.
    [44]
    Dymond J, Suess E, Lyle M. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity[J]. Paleoceanography, 1992, 7(2): 163−181. doi: 10.1029/92PA00181
    [45]
    Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: an update[J]. Chemical Geology, 2006, 232(1/2): 12−32.
    [46]
    Murray R W, Leinen M. Scavenged excess aluminum and its relationship to bulk titanium in biogenic sediment from the central equatorial Pacific Ocean[J]. Geochimica et Cosmochimica Acta, 1996, 60(20): 3869−3878. doi: 10.1016/0016-7037(96)00236-0
    [47]
    Anderson R F, Chase Z, Fleisher M Q, et al. The Southern Ocean's biological pump during the last glacial maximum[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9/10): 1909−1938.
    [48]
    Wolff E W, Fischer H, Fundel F, et al. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles[J]. Nature, 2006, 440(7083): 491−496. doi: 10.1038/nature04614
    [49]
    武力, 王汝建, 肖文申, 等. 东南极普里兹湾陆坡扇晚第四纪高分辨率地层年龄模式[J]. 海洋地质与第四纪地质, 2015, 35(3): 197−208.

    Wu Li, Wang Rujian, Xiao Wenshen, et al. High resolution age model of late Quaternary mouth fan at Prydz Trough, Eastern Antarctica[J]. Marine Geology and Quaternary Geology, 2015, 35(3): 197−208.
  • Relative Articles

  • Cited by

    Periodical cited type(3)

    1. 赵宁,高金耀,马朋云,韩喜彬,孙曦,阳凡林,葛倩,董超,陆晓鸣,杨春国. 阿蒙森海西部陆架边缘冰山犁沟的形态特征及影响因素研究. 极地研究. 2024(04): 623-639 .
    2. 张静渊,肖文申,王汝建,樊加恩,王含章,杨如意. 晚更新世阿蒙森海生产力和冰筏输入的变化对表层海洋环境和西南极冰盖演化的指示. 海洋地质与第四纪地质. 2023(02): 136-144 .
    3. 李帅,杨嘉樑,赵国庆,李灵智,饶欣,黄洪亮. 阿蒙森海夏季南极磷虾资源空间分布及其与叶绿素浓度的关系. 极地研究. 2022(04): 451-459 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.5 %FULLTEXT: 13.5 %META: 85.7 %META: 85.7 %PDF: 0.8 %PDF: 0.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.5 %其他: 4.5 %其他: 1.3 %其他: 1.3 %China: 0.3 %China: 0.3 %上海: 2.1 %上海: 2.1 %兰州: 0.5 %兰州: 0.5 %北京: 5.6 %北京: 5.6 %南昌: 0.3 %南昌: 0.3 %厦门: 0.5 %厦门: 0.5 %哥伦布: 0.3 %哥伦布: 0.3 %天津: 1.6 %天津: 1.6 %张家口: 2.1 %张家口: 2.1 %杭州: 4.0 %杭州: 4.0 %栃木: 0.3 %栃木: 0.3 %武汉: 1.1 %武汉: 1.1 %深圳: 0.3 %深圳: 0.3 %湖州: 0.3 %湖州: 0.3 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.5 %潍坊: 0.5 %烟台: 0.5 %烟台: 0.5 %福州: 0.5 %福州: 0.5 %芒廷维尤: 49.7 %芒廷维尤: 49.7 %芝加哥: 0.3 %芝加哥: 0.3 %西宁: 18.8 %西宁: 18.8 %贵阳: 0.3 %贵阳: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.3 %邯郸: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %阿什本: 0.5 %阿什本: 0.5 %青岛: 1.6 %青岛: 1.6 %马鞍山: 0.3 %马鞍山: 0.3 %其他其他China上海兰州北京南昌厦门哥伦布天津张家口杭州栃木武汉深圳湖州漯河潍坊烟台福州芒廷维尤芝加哥西宁贵阳运城邯郸重庆长沙长治阳泉阿什本青岛马鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (539) PDF downloads(180) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return